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Chapter 1

Introduction

The purpose of this course is to present in an intuitive but rigourous way the basic mathe-
matical knowledge needed to understand the general theory of relativity with some empha-
sis on conformal methods, then to give a precise description of the fundamental examples
of black hole space-times (Schwarzschild, Reissner-Nordstrøm, De Sitter-Schwarzschild,
Kerr), and to present some applications of conformal techniques to the analysis of the
behaviour of test �elds on the spacetimes of general relativity : conformal scattering and
also a complete treatment of an important question that until today has been open for
more than 40 years, the peeling on the Schwarzschild metric.

General relativity is a geometrical theory of gravity. There are three essential principles
that rule the theory :

1. material objects and �elds cannot travel at speeds greater than that of light ;

2. the notion of simultaneity or even of an event being in the past of another depends on
the observer (this is the reason for the name �relativity�), space and time are united
in a single object called spacetime and no longer have an independent existence ;

3. gravity is itself a �eld that cannot travel faster than the speed of light, it is encoded
in the theory as a geometrical quantity, a part of the curvature of the spacetime (it is
a quantity de�ned locally from the knowledge of the local geometry of the universe),
and it is determined by �eld equations that propagate the gravitational �eld, the
Einstein equations.

With merely the �rst two principles, we have the theory of special relativity, which is
not a theory of gravity.

The background of General Relativity in its original form is a four-dimensional space-
time, that is to say a manifold M of real dimension 4, describing the universe of space
and time, or, if one prefers, although it is not fully in agreement with the spirit of gen-
eral relativity, the evolution of a three dimensional universe throughout time. Since then,
many other cases have been considered, universes with only space and no time or with
a ludicrous amount of spatial dimensions for one time. We will not be concerned with
these cases here. This course considers only the four-dimensional spacetimes that form the
framework of what is now sometimes referred to as classical general relativity : Einstein's
theory. To understand the notion of spacetime su�ciently well so as to work with it, we
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8 CHAPTER 1. INTRODUCTION

need to de�ne properly a fair amount of geometrical concepts that are essential to the the-
ory, among which metrics, connections, and the curvature tensor. Only a basic knowledge
of di�erential geometry and tensor calculus will be assumed.
A bit of history.

1850 Mitchell, Laplace, dark star.

1905 Special Relativity.

1915 General Relativity.

1917 Schwarzschild metric (see chapter 5).

1917 Cosmological constant. Einstein introduces this extra term in his equations after
realizing that the original form of his theory does not allow for a static universe
(unless it is �at). The cosmological constant induces a repulsive force which he
adjusted to counterbalance gravity, thus obtaining a static universe : the Einstein
cylinder.

1919 Eddington's expedition con�rms the de�ection of light by the sun. Eddington
travelled to the island of Principe o� the West coast of Africa, to observe a total
eclipse of the sun. Stars that could be seen near the sun at that time appeared to
have shifted from their usual position with respect to the other stars, thus con�rming
the prediction of general relativity that the gravitational �eld of the sun should de�ect
light rays. The e�ect can only be seen during a total eclipse ; under normal conditions,
the light of the sun is too bright and prevents �close� enough stars from being seen.

1924 Eddington discovers the Eddington-Finkelstein coordinates, re-discovered by Fin-
kelstein in 1958 (see section 5.4.1).

1929 Hubble discovers the red-shift e�ect, thus proving the expansion of the universe.
The cosmological constant is consequently abandoned as a reasonable model for
physics, though it is still the object of mathematical studies. Einstein calls it his
greatest mistake.

1939 Oppenheimer-Snyder model for the collapse of a star.

1960 Kruskal and Szekeres discover independently the Kruskal-Szekeres coordinates (see
section 5.4.2).

1963 Kerr metric (see chapter 7).

1967 John Wheeler is credited with having coined the term "black hole" at a conference
that year. He insists that someone else did. It seems to have appeared �rst in 1964
in a letter by Anne Ewing to the AAAS.

1967 Boyer-Lindquist coordinates.

1970 Hawking-Penrose singularity theorem. It establishes mathematically the existence
of black holes as necessary in the framework of general relativity and by reversing
time also entails the existence of a singularity at the origin of the universe : the big
bang.
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1998 The expansion of the universe is observed to be faster than expected. This will
lead to the re-introduction of the cosmological constant in the Einstein equations as
a reasonable model for the physics of the universe.
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Chapter 2

Basic geometrical concepts

2.1 Submanifolds, manifolds, tensors

De�nition 2.1. A smooth submanifold of Rn of dimension k ∈ {1, ..., n} is a subset S
of Rn such that, for any point p0 ∈ S, there exists V a neighbourhood of p0 in Rn, U a
neighbourhood of 0 in Rn and φ : U → V a C∞ di�eomorphism such that φ(0) = p0 et

S ∩ V =
{
p = φ(q) ; q = (x1, .., xk, 0, ..., 0) ∈ U

}
,

i.e. it is a subset of Rn that can locally be straightened smoothly as a k-dimensional plane.
This is called a local chart of S.

The topology of Rn induces naturally a topology on S by restriction to S of open sets
of Rn.

Such an object can be understood without reference to the ambient space Rn, it is
then referred to as a k-dimensional smooth manifold. The concept of submanifold of Rn

is su�cient thanks to a theorem by H. Whitney in 1936 [26], stating that a manifold of
dimension d can be embedded in R2d+1, i.e. realized as a submanifold of dimension d
of R2d+1. With the de�nition above, we can easily introduce the notion of tangent and
cotangent space to a given submanifold of Rn.

The vectors
∂φ

∂x1
(q) , ... ,

∂φ

∂xk
(q) ,

are tangent to S at p and generate a k-dimensional subspace of Rn since φ is a di�eomor-
phism. This subspace is denoted Tp(S) and called the tangent space to S at p.

We denote by T ∗p (S) and call cotangent space to S at p the dual of Tp(S), i.e. the space
of continuous linear forms acting on Tp(S). The elements of T ∗p (S) are called co-vectors at
p.

De�nition 2.2 (Tangent bundle, cotangent bundle). We denote by TS (resp. T ∗S) and
call tangent bundle (resp. cotangent bundle) the set of pairs (p,X) where X ∈ TpS (resp.
X ∈ T ∗pS). Both are smooth manifolds of dimension 2k (it is very easy to realize them as
smooth submanifolds of R2n of dimension 2k, using local charts of S, TS can be trivialized
locally in p and globally in X as Ω × Rk where Ω is an open set of Rk, it is φ−1(S ∩ V )

11



12 CHAPTER 2. BASIC GEOMETRICAL CONCEPTS

for the local chart described above). Explicitely, for a given local chart φ : U → V for S,
denoting Dφ(q) the di�erential of φ at q, the map

ψ : U ×Rn → X × Rn , ψ(q,X) = (φ(q), Dφ(q)(X))

is a local chart for TS and

{(p,X) ∈ TS ; p ∈ U ∩ S}
= {ψ(q, Y ) ; q ∈ U , Y ∈ Rn , q = (q1, q2, ..., qk, 0, ..., 0) , X = (X1, X2, ..., Xk, 0, ..., 0)} ;

the map

χ : U ×Rn → V × Rn , ψ(q,X) = (φ(q), ((Dφ(q))∗)−1 (V ))

is a local chart for T ∗S and

{(p,X) ∈ T ∗S ; p ∈ U ∩ S}
= {χ(q, Y ) ; q ∈ U , Y ∈ Rn , q = (q1, q2, ..., qk, 0, ..., 0) , X = (X1, X2, ..., Xk, 0, ..., 0)} .

De�nition 2.3 (Vector �elds, 1-forms). A vector �eld is a function that to each point
p ∈ S associates a vector at p, i.e. an element of TpS. The graph of this function is
a subset of TS that is referred to as a section of TS. The vector �eld and the section
(the function and its graph) are usually identi�ed. Using local charts, a vector �eld can
be understood locally as a function from S (or even from an open set of Rk) to Rk and
it is therefore straightforward to talk about the regularity of such an object. Instead of the
usual notation Γ(TS) for the sections of TS, we shall use a notation that makes clear the
regularity of the �elds we consider, for example C∞(S ; TS) will denote the set of smooth
sections of TS, D′(S ; TS) will denote the space of vector-valued distributions on S. We
shall also consider sections with a regularity de�ned by Sobolev or Hölder spaces.

A 1-form is de�ned in a similar way as a section on T ∗S, we shall use similar notations,
such as for example Hk

loc(S ; T ∗S).

Now we can consider vectors (resp. vector �elds) as forms acting on co-vectors (resp.
1-forms). In other words, we can trivially identify TS and T ∗∗S. The advantage of this is
that the notion of tensor product is then very easily de�ned, and hence so are tensors and
tensor �elds.

De�nition 2.4 (Tensor at a point). We de�ne tensors at a point in an inductive manner as
follows. Unfortunately there is no pleasant unambiguous notation for the space of tensors
of a given valence at a point, but such notations will exist when talking about tensor �elds.

• First we call vectors at a point p ∈ S tensors at p of valence

[
1
0

]
and covectors at

p will be referred to as tensors at p of valence

[
0
1

]
. Tensors of valence

[
1
0

]
are

then understood as linear forms on tensors of valence

[
0
1

]
and vice versa.
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• Given two tensor at p of valence

[
1
0

]
, say X and Y , we de�ne their tensor product

as the bilinear form on the space of tensors of tensors of valence

[
0
1

]
at p

X ⊗ Y : (α, β) 7→ α(X)× β(Y ) .

The space of tensors of valence

[
2
0

]
at p is then de�ned as the space of �nite linear

combinations of all such objects, it is the space of bilinear forms on T ∗pS.

We can de�ne in a similar way tensors at p of valence

[
0
2

]
as �nite linear combi-

nations of the tensor products of two tensors of valence

[
0
1

]
(i.e. bilinear forms on

TpS), and tensors at p of valence

[
1
1

]
as �nite linear combinations of the tensor

products of a tensor of valence

[
0
1

]
and another of valence

[
1
0

]
(i.e. bilinear

forms on TpS × T ∗pS). There should be two notions of tensors of valence

[
1
1

]
de-

pending on whether we put a vector or a covector �rst in the tensor products, but the
commutativity of the product in R gives a canonical identi�cation between the two
notions.

• Tensors of any given valence

[
m
n

]
, m,n ∈ N at p can be de�ned analogously : we

consider the tensor product of m vectors V1, ..., Vm and n covectors X1, ..., Xn at
p, denoted V1 ⊗ ... ⊗ Vm ⊗X1 ⊗ ... ⊗Xn as the m + n multi-linear forms acting on
m covectors Y1, ..., Ym and n vectors W1, ..., Wn as follows

V1 ⊗ ...⊗ Vm ⊗X1 ⊗ ...⊗Xn (Y1, ..., Ym,W1, ...,Wn)
= Y1(V1)...Ym(Vm)X1(W1)...Xn(Wn) .

The tensor bundle of valence

[
m
n

]
is the space of �nite linear combinations of such

tensor products, it is the space of the m+n multi-linear forms acting on m copies of
T ∗pS and n copies of TpS.

De�nition 2.5 (Tensor �elds). Doing a similar construction with vector �elds and 1-forms
instead of vectors and co-vectors at a point, we obtain the notion of tensor �elds of valence[
m
n

]
. Such tensor �elds are sections of a vector bundle referred to as the tensor bundle

of valence

[
m
n

]
: it is analogous to the tangent bundle but instead of the tangent space,

we attach to each point the space of tensors of valence

[
m
n

]
at this point. The tensor

bundle refers to the collection of all the tensor bundles of given valence. The abstract index
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formalism will provide us with convenient ways of denoting the tensor bundles of a given
valence1.

For tensors of valence

[
2
0

]
or

[
0
2

]
, the notion of symmetry is straightforward. For

a tensor α of valence

[
0
2

]
, it goes as follows : α is said to be symmetric is for any vectors

V,W , we have α(V,W ) = α(W,V ) ; α is said to be anti-symmetric is for any vector �elds
V,W , we have α(V,W ) = −α(W,V ). The notion is analogous for a tensors of valence[

2
0

]
and extends naturally to �elds of such tensors. For a tensor of type

[
1
1

]
however,

there is no notion of symmetry since the arguments cannot be exchanged.

For a tensor T of valence

[
m
n

]
, we can consider a set of m!n! tensors of the same

valence obtained from T by symmetry operations, consisting of permutations of the set
of vectors and permutations of the set of covectors to which it is applied. Permutations
between vectors and co-vectors are not allowed for the reason seen above. If among these
m!n! tensors, some of them are equal, then T is said to have some symmetries. If they
are all equal, T is said to be totally symmetric. If they are all equal to T multiplied by
the product of the signatures of the permutations, T is said to be totally antisymmetric.
Intermediate situations are numerous, such as tensors that are totally symmetric in their
vector arguments and totally anti-symmetric in the co-vector arguments.

Tensor �elds of valence

[
0
p

]
are called p-forms. A di�erential p-form will be a totally

antisymmetric tensor �elds of valence

[
0
p

]
.

De�nition 2.6 (Bases). A basis of TS, also referred to as a frame, is a family of k vector
�elds Vi, i = 1, ..., k, on S such that at each point p ∈ S, {V1(p), V2(p), ..., Vk(p)} is a
basis of Tp(S). To such a basis is associated a dual basis of 1-forms {αi}i=1,...,k such that
αi(Vj) = δi

j, i.e. is equal to 1 if i = j and to 0 otherwise. These then induce bases of all the
bundles of tensors of a given valence by tensor product. For instance, {αi⊗αj⊗Vl}i,j,l=1,...,k

is a basis of the tensor bundle of valence

[
1
2

]
. A given tensor �eld can then be described

by its components in the relevant basis, that will be referred to as components in the basis
{Vi}i=1,...,k, since all the bases of the tensor bundles stem from this original one. For

example, for a tensor T of valence

[
2
1

]
, we shall denote

T =
k∑

i=1

k∑
j=1

k∑
l=1

T ij
l Vi ⊗ Vj ⊗ αl . (2.1)

Note that the frame {Vi}i=1,...,k also induces bases on tensor sub-bundles with symme-
tries. For instance, {αi⊗αj ⊗Vl +αj ⊗αi⊗Vl}i,j,l=1,...,k is a basis of the symmetric tensor

1The degree of convenience of such notations is relative to the observer but also to the use to which the
notation is put, they have the advantage of labelling clearly the type of quantities one deals with and of
allowing calculations as explicit as when using bases, but while remaining totally intrinsic.
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bundle of valence

[
1
2

]
.

Remark 2.1 (Einstein convention). The Einstein notational convention says that if an
index is repeated in an expression, appearing once up and once down, then it is �contracted�,
i.e. the sum is taken oven all the numerical values of the index. With this convention, the
expression (2.1) becomes

T = T ij
l Vi ⊗ Vj ⊗ αl .

We shall systematically use this convention.

Sometimes, we may consider a frame that is only de�ned locally on an open set U of
S. We shall then refer to it as a local frame, sometimes a local frame over U .

An important example of local frame is that associated to a coordinate system. In
such a case, the dual basis is naturally yielded by the coordinate system, then the frame
is obtained by duality.

De�nition 2.7 (Coordinate bases). Consider a local coordinate system x1, x2, ..., xk on an
open set U of S. The family of 1-forms {dx1,dx2, ...,dxk} is by de�nition a local basis of
T ∗S over U , i.e., at each point p ∈ U , {dx1,dx2, ...,dxk} is a basis of T ∗pS. Its dual basis
is a local frame over U denoted

{
∂

∂x1 ,
∂

∂x2 , ...,
∂

∂xk

}
.

Such a local coordinate system is usually obtained via a local chart from the local
coordinates {x1, ..., xk) on φ−1(V ∩ S). The 1-forms dx1, ..., dxk then refer to the coor-
dinate 1-forms on U that act on vector �elds on V ∩ S pulled back to φ−1(V ∩ S) by the
di�eomorphism φ. More precisely, the notation dxi(W )(p) for a vector �eld W on V ∩ S
and p = φ(q) ∈ V ∩ S really means dx1

(
(Dφ(q))−1 (V )

)
.

The notation of the coordinate basis vectors as di�erential operators reveals an impor-
tant identi�cation that is always made between vector �elds and di�erential operators. The
idea behind this identi�cation is that vector �elds de�ne a �ow and following geometrical
objects along this �ow, we can de�erentiate them with respect to the parameter of the
�ow. This is the notion of Lie derivative that we shall encounter very soon.

Local frames are in fact more common than global ones. An important example is
given by spherical coordinates on R3. The frame associated with the coordinate system is
not globally de�ned. The coordinate system and the frame associated with it are singular
on the North-South axis.

2.2 Abstract index formalism

Projecting tensors onto local bases is very useful for doing explicit calculations. The
disadvantage of such calculations is that sometimes, they depend on the basis chosen. The
intrinsic aspect of the result is therefore often a problem. However, in many cases, the
advantage of a local basis is purely notational, in keeping track of the indices. This is
what led Roger Penrose to developing the abstract index formalism. A complete axiomatic
description of this set of notations is given in Spinors and space-time Vol.1 [24]. We simply
intend to give a �avour of the essential idea here in order to be able to use this formalism
for explicit calculations.



16 CHAPTER 2. BASIC GEOMETRICAL CONCEPTS

Abstract indices

Consider T a tensor �eld of valence

[
m
n

]
. We shall denote T with indices, m up and

n down, in order to be able to see the nature of this object purely from the way it is
denoted. The indices used are always lower case lightface latin letters2, possibly with
indices themselves. Here for instance, we would do well to use a notation like

T a1a2...am
b1b2...bn

.

For the moment, the respective position of an index that is up and another that is down
is unimportant, for the reason already mentionned earlier that the product on R is com-
mutative, therefore there is no reason a priori to distinguish between α ⊗ V and V ⊗ α,
where α is a 1-form and V a vector �eld. So we write the up and down indices above one
another.

It is important to understand that the notation above does not refer to a collection of
components in referrence to a basis. It is the intrinsic tensor �eld to which we have just
put some stickers to see how many legs up and down it has3. The tensor T has m 1-form
arguments and n vector �eld arguments. Suppose we wish to express

T (α, β, ..., γ, U, V, ...,W ) (2.2)

with abstract indices, we shall denote the 1-forms with an index down, since they are

tensor �elds of valence

[
0
1

]
and the vector �elds with an index up since they are tensor

�elds of valence

[
1
0

]
. Then the notation for (2.2) will be

T a1a2...am
b1b2...bn

αa1βa2 ...γamU
b1V b2 ...W bn .

There is no sum over indices of course since these are not indices that take numerical
values, purely labels. The fact that an index is present once up and once down in the same
expression means that a contraction has to take place, this denotes the action of one �leg�
of the tensor on a vector or a 1-form. This is the abstract index version of the Einstein
convention. The order of the factors in the above expression is irrelevent, the repeated
indices simply tell us in what slot a vector or a 1-form should be contracted.

The tensor bundles of a given valence can be denoted with abstract indices too, for

example TaS denotes T ∗S and T ab
c S is the tensor bundle of valence

[
2
1

]
.

The link between the quantities with indices and without indices is formally realized
by objects denoted dxa and ∂

∂xa . For instance,

V = V a ∂

∂xa
, α = αadxa , T = T a

bc

∂

∂xa
⊗ dxb ⊗ dxc .

2In Penrose's abstract index formalism, indices denoted by upper case latin letters are for spinors and
indices denoted by greek letters are for twistors. As for boldface indices, they are concrete indices with
referrence to a basis.

3Indeed, a more abstract set of notations has been developed by Penrose, consisting purely of diagrams
with legs. See [24] for a description of the �legged diagram� formalism.
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This looks like a decomposition on a basis, but the indices are all abstract, this is purely a
formal link between indexed and non indexed quantities. This type of link is required for
the coherence of some expressions. Typically, if we integrate a 1-form on a curve, we wish
to obtain a scalar, hence without an index, so it is clear that the expression

I =
∫
C
αa ,

is inadequate. Instead, the following expression should be used

I =
∫
C
αadxa .

Another good reason for using these dxa and ∂
∂xa conventions is that most expressions

should be the same with abstract indices or with concrete indices referring to a basis.

Symmetrizers and anti-symmetrizers

The symmetry operations on a tensor can now be expressed explicitely. If we swap two
indices (they have to be both up or both down for this to be legitimate), this means
that when applying the tensor to 1-forms and vectors, we shall swap the corresponding
arguments. The symmetry operations known as symmetrizers are denoted by parentheses
on each side of the group of indices it applies to, and anti-symmetrizers are denoted by
square brackets. For example

T a
(bc)d =

1
2

(T a
bcd + T a

cbd) ,

N
a[bc]d
ef =

1
2

(
Nabcd

ef −Nacbd
ef

)
,

K[abc] =
1
6

(Kabc +Kbca +Kcab −Kbac −Kacb −Kcba) .

If we wish to exclude an index or a group of indices from a symmetry operation, we put
them between vertical bars, such as

T ab
(c|de|f)g =

1
2

(
T ab

cdefg + T ab
fdecg

)
.

Concrete indices

Concrete indices refer to a given basis and label the components of tensors with respect
to this basis, they take numerical values. They are denoted by boldface lower case latin
letters. They also label the basis vectors and 1-forms. For instance, a frame {V1, ..., Vk}
will be denoted {Va}a=1,...,k and the dual basis of 1-forms {αa}a=1,...,k. As indexed objects,
the basis vectors are denoted V a

a and the 1-forms αa
a, i.e. we can write

Va = V a
a

∂

∂xa
.

There is no contraction possible between a concrete index and an abstract

index, they are objects of di�erent natures.
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The decomposition of a vector or a 1-form in the basis is written as

W a = W aV a
a or W = W aVa ,

βa = βaα
a
a or β = βaα

a .

For handwriting, boldface letters are not exactly natural, instead we shall underline the
indices to signify that they are concrete indices.

Remark 2.2. There is no perfect notation. The abstract index formalism has advantages
for some aspects, and inevitable drawbacks. In some cases, it becomes too heavy and abusive
notations are then sometimes used. When resorting to such, we shall endeavour to point it
out.

2.3 Metrics

De�nition 2.8 (metric). Let M be a smooth manifold of dimension n.

1. A metric on M is a symmetric 2-form on M (equivalently, a symmetric tensor �eld

of valence

[
0
2

]
). We shall always assume a metric on M to be at least continuous

on M.

2. Consider a metric g on M. We say that a local frame {V1, .., Vn} on an open set U
of M is orthonormal for g if

g(Vi, Vj) =
{

0 if i 6= j ,
±1 if i = j .

3. We say that a metric g on M is non degenerate if, for any point p of M there exists
a neighbourhood U of p and an orthonormal local frame {V1, .., Vn} on U .

4. We say that a metric g on M has signature (+ + ...+−...−) with k �+� and n− k
�−� if, for any point p of M there exists a neighbourhood U of p and an orthonormal
local frame {V1, .., Vn} on U such that for exactly k values of i ∈ {1, ..., n} we have
g(Vi, Vi) = 1 and for exactly n − k values of i ∈ {1, ..., n} we have g(Vi, Vi) = −1.
Such metrics are of course non degenerate. Note also that for a non degenerate
continuous metric on a connected manifold M, the signature is unambiguously and
globally de�ned on M.

De�nition 2.9. A metric with signature (+...+) is called riemannian (the case of signature
(−...−) is rarely considered as such and usually identi�ed with the riemannian case). When
the signature contains �+� and �−� signs, the metric is said to be pseudo-riemannian or
semi-riemannian. When there is only one �+� and n − 1 �−� signs, the metric is said to
be Lorentzian (the case (− + ...+) is also referred to as Lorentzian by many authors, the
choice of convention (+− ...−) or (−+ ...+) is purely a matter of personal taste).

Examples. 1. Euclidian metric on R3. It is expressed in cartesian coordinates as

g = dx2 + dy2 + dz2
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and acts on vectors at a point or vector �elds on R3 as follows

V = V 1 ∂

∂x
+ V 2 ∂

∂y
+ V 3 ∂

∂z
, W = W 1 ∂

∂x
+W 2 ∂

∂y
+W 3 ∂

∂z
,

g(V,W ) = V 1W 1 + V 2W 2 + V 3W 3 .

This can be understood in terms of matrices as

g(V,W ) =
(
V 1 V 2 V 3

) 1 0 0
0 1 0
0 0 1

 W 1

W 2

W 3

 ,

where the 3× 3 matrix above is the matrix of g in the coordinate basis {x, y, z}. The
signature of g is (+ + +).

2. On R2, we consider the metric expressed in cartesian coordinates as

g = 2dxdy ,

where dxdy denotes the symmetric product

dxdy =
1
2

(dx⊗ dy + dy ⊗ dx) .

Its action on vectors at a point or vector �elds on R2 is described as

g(V,W ) =
(
V 1 V 2

)( 0 1
1 0

)(
W 1

W 2

)
= V 1W 2 + V 2W 1 .

This is a Lorentzian metric of signature (+−). Putting x = u+ v and y = u− v, g
takes the new expression

g = 2du2 − 2dv2

which makes its Lorentzian signature more explicit.

De�nition 2.10 (Spacetime). A spacetime is a 4-dimensional connected smooth manifold
M endowed with a metric g of Lorentzian signature. By convention, when dealing with
bases on a spacetime, the basis vectors will be numbered from 0 to 3, when one of them is
timelike and the others spacelike, the timelike one will receive the label 0 (for the notion of
timelike and spacelike vectors on a spacetime, see de�nition 4.1).

De�nition 2.11 (The metric as an index raising and lowering operator). Consider a
spacetime (M, g). To a vector V a at a point we can associate a covector by contracting V a

into the metric at that point. We denote by Va the covector thus obtained

Va = V bgab .

Since the metric is a non degenerate symmetric 2-form, this operation is an isomorphism
between vectors and covectors. We denote by gab the inverse operator, i.e.

V a = gabVb .
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Then gab is a symmetric tensor of valence

[
2
0

]
and by construction we have

gabg
bc = δc

a ,

where δc
a is merely an operator that replaces the index a by the index c, i.e. it transforms a

vector �eld into the same vector �eld but with the index denoted by another letter. In terms
of concrete indices, gab will be the matrix of the metric in the chosen basis, gab will be the
inverse matrix and δca is the usual Kronecker symbol, that is 1 is a = c and 0 otherwise.

Remark 2.3. As soon as we start raising and lowering indices using the metric, we realize
that the respective position of up and down indices may have some importance after all.
Typically we want to avoid the following absurdity

gcfT ab
cde = T abf

de , gfcT
abf
de = T ab

dec and therefore T ab
cde = T ab

dec ,

which looks like a symmetry property whereas it should just be T = T . Hence, in some
cases where we wish to keep track of indices though raising and lowering operations, we
will order all indices, irrespective of their position up or down. We will have notations like

gaiT
a
bc

de
f = Tibc

de
f .

De�nition 2.12 (Dual bases and index raising). Consider a spacetime (M, g) and a
(possibly local) frame {V a

a }a=0,1,2,3. We consider the four 1-forms V a
a de�ned by

V a
a = gabgabV

b
b .

This is at each point a basis of covectors satisfying

V a
a V

a
b = δab ,

i.e. it is the (local) basis of 1-forms dual to {V a
a }a=0,1,2,3.

Remark 2.4. In particular in a coordinate basis, if V a
a dxa = dxa, then V a

a
∂

∂xa = ∂
∂xa .

Remark 2.5. With these notations, the components of a tensor �eld in the basis {V a
a }a

are given by, for example,
T a
bc = V a

a V
b
bV

c
c T

a
bc .

Useful notations for basis vectors and covectors are ga
a and gaa .

2.4 Connections, tortion and curvature

De�nition 2.13. We de�ne the gradient operator

∂a : D′(M ; R) → TaM ;

by
∂afdxa = df ,

i.e. the gradient operator is just the exterior derivative acting on functions. This is an
intrinsic object depending neither on the metric nor on a choice of coordinate system.
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A connection is an extension of the gradient to tensor �elds which satis�es two natural
properties :

De�nition 2.14. A connection ∇a is an extension of the gradient to arbitrary tensor
�elds, such that :

1. it is linear from any tensor bundle F of given valence to T ∗M⊗ F ;

2. it satis�es the Leibnitz rule.

Theorem 2.1. There exists a unique connection ∇a such that :

1. it is tortion-free, meaning that [∇a , ∇b] f = 0 for any scalar �eld f , where [∇a , ∇b]
is the commutator of ∇a and ∇b, [∇a , ∇b] = ∇a∇b −∇b∇a ;

2. it commutes with the metric, i.e. ∇agbc = 0 and ∇ag
bc = 0.

It is called the Levi-Civita connection.

Proof. We start with uniqueness, existence will be a trivial consequence. Working
with a local coordinate basis, we denote by Va, or

∂
∂xa , or ∂a the basis vectors as well as

partial derivation with respect to the coordinate xa. The notation ∇a with a concrete
index refers to

∇a = V a
a ∇a ,

i.e. covariant di�erentiation in the direction Va. Let us �rst consider the action of ∇a on
a 1-form ωb. If we decompose the 1-form ω on the basis dxa (or V a

a ), dual to ∂a (or V a
a ),

ω = ωbdxb or ωb = ωbV
b
b .

using the linearity of ∇a, we must have

∇aωb = (∇aωb)V b
b + ωb∇aV

b
b ,

Since for each b, ωb is a scalar function on M, by the assumption that ∇a is an extension
of the gradient operator, the action of ∇a on ωb reduces to the partial derivation of ωb in
the direction or V a

a , i.e.

∇aωb = V a
a ∂aωb = ∂aωb .

Hence the action of ∇a−∂a on a 1-form is described by a zero order linear operator de�ned
as follows by the action of ∇a on the basis 1-forms :

(∇a − ∂a)ωb = (∇aV
c
b )ωc

and if we project the equality above on the basis 1-form dxb, we obtain

V b
b (∇a − ∂a)ωb = (∇aV

c
b )ωcV

b
b . (2.3)

The coe�cients V b
b∇aV

c
b are referred to as the Christo�el symbols and denoted Γab

c. We
see that Γab

c is the projection on dxb of the action of ∇a on dxc.
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Remark 2.6. In most geometry textbooks, the expression (2.3) is simply written

∇aωb = ∂aωb − Γab
cωc . (2.4)

This notation is dreadful and wrong! Indeed, ωb is a scalar, it is the component of
ωb along the basis 1-form Vb. Therefore, its covariant derivative is just its gradient ∂aωb,
no additional term should be present! This terrible notation is completely standard in all
geometry books, whether or not they use abstract indices. It is used in order to avoid a
correct but much heavier expression. In the case of (2.4), what is meant by the left-hand
side is that we look at the covariant derivative of ωb in the direction Va, i.e. ∇aωb, and
then we evaluate its component along the 1-form Vb. The correct expression is therefore

V b
b∇aωb = ∂aωb − Γab

cωc .

However unsatisfactory the notation used in (2.4) may be, it is hard to avoid it, because
the correct notation becomes totally unreadable when we di�erentiate tensors of arbitrary
valence. But even though we shall with shame adopt such abusive notations, it is important
to bear in mind what the correct meaning is for these incorrect expressions.

Now using the fact that ∇a is tortion free, we have for any scalar �eld f (bearing in
mind that the notation is again incorrect)

0 = [∇a , ∇b] f = ∇a∂bf −∇b∂af

= [∂a , ∂b] f − Γab
c∂cf + Γba

c∂cf

= −Γab
c∂cf + Γba

c∂cf ;

whence Γab
c = Γba

c, i.e. Γab
c is symmetric in (a,b).

We then use the Leibnitz rule to determine the action of ∇a on a tensor �eld of any
valence. First, we have

∇a

(
ωbv

b
)

= ∂a

(
ωbv

b
)

(since ωbv
b is a scalar �eld)

= (∂aωb)vb + ωb∂av
b ,

and also
∇a

(
ωbv

b
)

= vb (∂aωb − Γab
cωc) + ωb∇av

b

and it follows that ωb

(
∇av

b − ∂av
b − Γac

bvc
)

= 0 for any 1-form ωa and any vector �eld
va, hence

∇av
b = ∂av

b + Γac
bvc .

Using again the Leibnitz rule and the fact that tensors �elds are �nite sums of tensor
products of 1-forms and vector �elds, we get for a tensor �eld of arbitrary valence :

∇aK
i1...ip

j1...jq = ∂aK
i1...ip

j1...jq − Γaj1
bKi1...ip

b...jq − ...− Γajq
bKi1...ip

j1...b

+ Γab
i1Kb...ip

j1...jq + ...+ Γab
ipKi1...b

j1...jq .

The fact that ∇a must commute with the metric will then give us the expression of Γab
c :

0 = ∇agbc = ∂agbc − Γab
dgdc − Γac

dgbd , (2.5)

0 = ∇bgca = ∂bgca − Γbc
dgda − Γba

dgcd , (2.6)

0 = ∇cgab = ∂cgab − Γca
dgdb − Γcb

dgad . (2.7)
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Taking (2.5) + (2.6) -(2.7) and using the symmetry of Γab
c and gab, we obtain

2Γab
dgcd = ∂agbc + ∂bgca − ∂cgab

and multiplying by gec,

Γab
e =

1
2
gec (∂agbc + ∂bgac − ∂cgab) .

Hence the uniqueness of the Levi-Civita connection. Existence is checked using the explicit
formula above : all that needs to be veri�ed is that ∇a does not depend on the choice of
coordinate system although the Christo�el symbols do ; it is a tedious but straightforward
calculation.

Corollary 2.1. In a local coordinate basis, the action of the Levi-Civita connection on
tensors of arbitrary valence is given by

∇aK
i1...ip

j1...jq = ∂aK
i1...ip

j1...jq − Γaj1
bKi1...ip

b...jq − ...− Γajq
bKi1...ip

j1...b

+ Γab
i1Kb...ip

j1...jq + ...+ Γab
ipKi1...b

j1...jq . (2.8)

where the Christo�el symbols Γab
c, are de�ned by

Γab
c =

1
2
gcd (∂agbd + ∂bgad − ∂dgab) (2.9)

and satisfy
Γab

c = Γ(ab)
c .

Remark 2.7. 1. We have established in the proof of theorem 2.1 that a connection ∇a

is characterized by Christo�el symbols Γab
c whose expression depends on the choice

of local coordinates and acts on tensor �elds as described in equation (2.8).

2. The action of the connection is referred to as covariant di�erentiation.

3. The connection is said to be metric-compatible if it commutes with the metric, i.e.
∇agbc = 0 and ∇ag

bc = 0.

4. Given a connection ∇a and a vector �eld V a, the covariant directional derivative
in the direction of V is de�ned as the contraction of V a and ∇a, i.e. V a∇a, and
sometimes denoted ∇V .

Remark 2.8. It is important to note that the Christo�el symbols Γab
c are not a tensor

�eld : it is very easy to see that they depend on the choice of local coordinates (see exercice
3.2). However, the connection is an intrinsic object independent of the coordinate system.
The transformation of Christo�el symbols under a change of coordinates is �xed by the
independence of ∇a of the coordinate system and the fact that ∇a obeys the Leibnitz rule :
more precisely, in two di�erent coordinate systems, the action of ∇a on a 1-form must be
the same ; knowing the way in which the components of the 1-form change between the two
bases and using the Leibnitz rule, we obtain the relation between the Christo�el symbols in
the two coordinate systems.
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Proposition 2.1. To a connection ∇a is associated a tortion tensor de�ned by

[∇a , ∇b] f =: Tab
c∇cf = Tab

c∂cf . (2.10)

It is indeed a tensor �eld : since the connection is an intrinsic object, so is the tortion
tensor. In a coordinate basis, the torsion tensor is expressed in terms of the Christo�el
symbols as

Tab
c = Γba

c − Γab
c . (2.11)

By de�nition, we have Tab
c = T[ab]

c. If the tortion tensor is zero, the connection is said to
be tortion-free.

Proof. The action of the commutator of two covariant derivatives on a scalar �eld

[∇a , ∇b] f = ∇a∇bf −∇b∇af

is linear on the gradient of f . Moreover, spelling out the formula explicitely in a coordinate
basis,

[∇a , ∇b] f = ∂a∂bf − Γab
c∂cf − ∂b∂af + Γba

c∂cf = (Γba
c − Γab

c) ∂cf , (2.12)

we see that [∇a , ∇b] acts on ∇af as a di�erential operator of order zero, hence we have :

[∇a , ∇b] f =: Tab
c∇cf (2.13)

and the covariant derivative being an intrinsic object, Tab
c is a tensor �eld. The expression

(2.11) of the tortion tensor in terms of Christo�el symbols follows from (2.12) and (2.13).

Proposition 2.2. When the commutator of two covariant derivatives acts on tensor �elds
of arbitrary valence, it involves another tensor �eld : the Riemann curvature tensor Rabcd.
More precisely,

([∇a , ∇b]− Tab
c∇c)Ki1...ip

j1...jq

= Rabc
i1Kc...ip

j1...jq + ...+Rabc
ipKi1...c

j1...jq

−Rabj1
dKi1...ip

d...jq − ...−Rabjq
dKi1...ip

j1...d . (2.14)

In a local coordinate basis, its expression in terms of the Christo�el symbols is given by

Rabc
d = ∂b

(
Γac

d
)
− ∂a

(
Γbc

d
)

+ Γbc
eΓae

d − Γac
eΓbe

d . (2.15)

Proof. We denote

∆ab := [∇a , ∇b]− Tab
c∇c .

First we check that ∆ab acts on forms as a linear di�erential operator of order zero, and
hence as a tensor �eld since all quantities involved are intrinsic. We have in a coordinate
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basis

∆abωc = ∂a

(
∂bωc − Γbc

dωd

)
− Γab

d∇dωc − Γac
d∇bωd ( = ∇a∇bωc)

− ∂b

(
∂aωc − Γac

dωd

)
+ Γba

d∇dωc + Γbc
d∇aωd ( = −∇b∇aωc)

− Γba
d∇dωc + Γab

d∇dωc

(
= −Tab

d∇dωc

)
=− ∂a

(
Γbc

d
)
ωd − Γbc

d∂aωd − Γac
d∂bωd − Γac

dΓbd
eωe

+ ∂b

(
Γac

d
)
ωd + Γac

d∂bωd + Γbc
d∂aωd + Γbc

dΓad
eωe

=
(
∂b

(
Γac

d
)
− ∂a

(
Γbc

d
)

+ Γbc
eΓae

d − Γac
eΓbe

d
)
ωd .

This gives (2.14) in the case where ∆ab acts on a 1-form and (2.15) .
Then, for a 1-form αa and a vector �eld va, using the fact that αav

a is a scalar �eld,

∆abαev
e = 0 ,

and also
∆abαev

e = αe∆abv
e + ve∆abαe

since the cross terms cancel one another. Hence, for any 1-form αa and any vector �eld va,

αe∆abv
e = −veRabe

dαd = −αeRabc
evc ,

which proves (2.14) in the case where ∆ab acts on a vector �eld. As we have done in the
special case of the contraction of a 1-form and a vector �eld, it is trivial to verify that
∆ab satis�es the Leibnitz rule. Using this and the fact that tensor �elds are �nite sums of
tensor products of 1-forms and vector �elds, we obtain (2.14) in the general case.

Corollary 2.2. The commutator [∇a , ∇b] (and therefore also [∇a , ∇b]−Tab
c∇c) satis�es

the Leibnitz rule.

Theorem 2.2. The Riemann tensor has the following symmetries :

1. R(ab)cd = 0 ;

2. Rab(cd) = 0 if the connection is metric-compatible ;

3. R[abc]
d +∇[aTbc]

d +T[ab
eTc]e

d = 0, which, for a tortion-free connection, gives the �rst
Bianchi identity R[abc]

d = 0 ;

4. ∇[aRbc]d
e + T[ab

lRc]ld
e = 0 and if the connection is tortion-free, this gives the second

Bianchi identity ∇[aRbc]d
e = 0.

Corollary 2.3. Note that using R(ab)cd = 0, the �rst Bianchi identity becomes

Rabc
d +Rbca

d +Rcab
d = 0 .

Proof of the theorem. The �rst property follows from the de�nition of the Riemann
tensor.
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Proof of 2. Consider the action of ∆ab on the metric. Using the fact that the connection
is metric compatible, we must have ∆abgcd = 0, hence

0 = ∆abgcd = −Rabc
eged −Rabd

egce = −Rabcd −Rabdc ,

which gives the required symmetry.

Proof of 3. The properties of symmetry operations and of the tortion tensor give

∆[ab∇c] = 2∇[[a∇b]∇c] − T[[ab]
e∇|e|∇c]

= 2∇[a∇b∇c] − T[ab
e∇|e|∇c]

= 2∇[a∇[b∇c]] + T[ab
e∆c]e − T[ab

e∇c]∇e + T[ab
eTc]e

d∇d . (2.16)

Now for a given scalar �eld f , using (2.16) and the fact that ∆ab vanishes on scalar
�elds,

∆[ab∇c]f = −R[abc]
d∇df

= 2∇[a∇[b∇c]]f + T[ab
e∆c]ef − T[ab

e∇c]∇ef + T[ab
eTc]e

d∇df

= ∇[aTbc]
d∇df − T[ab

e∇c]∇ef + T[ab
eTc]e

d∇df

= ∇[aTbc]
d∇df − T[bc

d∇a]∇df + T[ab
eTc]e

d∇df

=
(
∇[aTbc]

d
)
∇df + T[ab

eTc]e
d∇df ,

which proves 3 since at any given point ∇af can be any covector.

Proof of 4. It is similar to the proof of 3 but we consider a vector �eld instead of a scalar
�eld. First, using 3, we have

∆[ab∇c]v
d = −R[abc]

e∇ev
d +R[ab|e|

d∇c]v
e

=
(
∇[aTbc]

e
)
∇ev

d + T[ab
iTc]i

e∇ev
d +R[ab|e|

d∇c]v
e (2.17)

and using (2.16), we also have

∆[ab∇c]v
d = 2∇[a∇[b∇c]]v

d + T[ab
e∆c]ev

d − T[ab
e∇c]∇ev

d + T[ab
eTc]e

i∇iv
d

= ∇[a∆bc]v
d +∇[aTbc]

e∇ev
d + T[ab

eRc]ei
dvi

−T[ab
e∇c]∇ev

d + T[ab
eTc]e

i∇iv
d

= ∇[aRbc]e
dve +∇[aTbc]

e∇ev
d + T[ab

eRc]ei
dvi

−T[ab
e∇c]∇ev

d + T[ab
eTc]e

i∇iv
d

=
(
∇[aRbc]e

d
)
ve +R[bc|e|

d∇a]v
e +∇[aTbc]

e∇ev
d

+T[ab
eRc]ei

dvi − T[ab
e∇c]∇ev

d + T[ab
eTc]e

i∇iv
d

=
(
∇[aRbc]e

d
)
ve +R[ab|e|

d∇c]v
e +

(
∇[aTbc]

e
)
∇ev

d

+T[ab
iRc]ie

dve + T[ab
iTc]i

e∇ev
d . (2.18)

Putting together (2.17) and (2.18), we obtain(
∇[aRbc]e

d
)
ve + T[ab

iRc]ie
dve = 0

for any vector �eld ve, which proves 4.



2.4. CONNECTIONS, TORTION AND CURVATURE 27

Remark 2.9. The anti-symmetrized derivative of the Riemann tensor appearing in the
fourth point or the previous theorem reads :

∇[aRbc]d
e =

1
6

(∇aRbcd
e +∇bRcad

e +∇cRabd
e −∇bRacd

e −∇cRbad
e −∇aRcbd

e) ;

using the �rst symmetry of the Riemann tensor, this takes on a simpler form

∇[aRbc]d
e =

1
3

(∇aRbcd
e +∇bRcad

e +∇cRabd
e) .

De�nition 2.15. We de�ne some important curvature quantities that are special parts of
the full Riemann tensor :

• the Ricci tensor Rab is the trace of the Riemann tensor in its second and fourth
indices

Rab := Racb
c = gcdRacbd ;

• the scalar curvature R is the trace of the Ricci tensor

R := Ra
a = gabRab

and it is often denoted by Scalg ;

• the Einstein tensor Gab is de�ned as

Gab := Rab −
1
2
Rgab ;

• the Weyl tensor Cabcd is the trace-free part of the Riemann tensor

Cabcd = Rabcd −
1
2
(
ga[cRd]b − gb[cRd]a

)
+

1
3
Rga[cgd]b .

Proposition 2.3. For the Levi-Civita connection, we have the following properties :

1. Rab = R(ab) (which implies immediately Gab = G(ab)) ;

2. ∇aGab = 0.

Proof.

1. Using the fact that R(ab)cd = 0,

Rab −Rba = (Racbd −Rbcad) gcd = − (Rcabd +Rbcad) gcd .

Then, by the �rst Bianchi identity (which requires the connection to be tortion-free),

Rab −Rba = Rabcdg
cd .

Assuming in addition the connection to be metric compatible, we have Rab(cd) = 0,
i.e. Rabcd is antisymmetrical in the last two indices. Contracting with the metric
(which is symmetric), we obtain 0.
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2. We start from the second Bianchi identity in which we contract the indices a and e :

0 = ∇aRbcd
a +∇bRcad

a +∇cRabd
a −∇bRacd

a −∇cRbad
a +∇aRcbd

a

= 2∇aRbcd
a + 2∇bRcad

a − 2∇cRbad
a using R(ab)cd = 0 ,

= 2∇aRbcd
a + 2∇bRcd − 2∇cRbd

= 2∇aRbcda + 2∇bRcad
a − 2∇cRbad

a

= −2∇aRbcad + 2∇bRcad
a − 2∇cRbad

a

the last equality but one being obtained using the fact that the connection is metric
compatible and the last one using the symmetryRab(cd) = 0 which also requires metric
compatibility. Then, we contract the indices c and d. Using the metric compatibility
again, we obtain :

∇aRbca
c = ∇bR−∇dRbad

a

i.e. 0 = 2∇aRba −∇bR

= 2∇aRba −∇a(Rgab)
= 2∇aGba = 2∇aGab .

The Einstein vacuum equations that characterize the geometry of an empty universe
are simply

Gab = 0 . (2.19)

In the case of a universe containing energy or matter, the Einstein equation will become

Gab = 8πTab

where Tab is a tensor (referred to as the stress-energy tensor) describing the distribution
of matter and energy in the universe.

Considered as an equation on the metric, Einstein's equation is a system of non linear
second order partial di�erential equations. Taking the trace of Gab, we obtain

Ga
a = Ra

a − 1
2
Rga

a = R− 2R = −R ,

whence (2.19) is equivalent to
Rab = 0 . (2.20)

Einstein vacuum spacetimes are also referred to as Ricci-�at spacetimes.
There is a modi�ed version of the Einstein equation, due to Einstein himself in 1917,

involving a constant Λ called the �cosmological constant�. It has the following form

Gab + Λgab = 8πTab . (2.21)

Einstein introduced this modi�cation because the original form of the theory did not allow
for a static universe (unless it is also �at), it had to be expanding or contracting. The
cosmological constant induces a repulsive force which Einstein adjusted so that it would
counterbalance gravitation exactly. His new version of the theory thus allow for a static
universe : the Einstein cylinder, see chapter 8. The reason for this is probably partly
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religious but also a static universe was the commonly accepted picture at that time. This
unfortunately prevented him from discovering the expansion of the universe which Hub-
ble proved in 1929. He subsequently declared that this was his greatest mistake. It is
interesting to notice that observations made from 1993 to 2005 show that the expansion
of the universe is now faster than we would expect. A well accepted explaination is that a
repulsive force induced by a cosmological constant is responsible for it : in the early stages
of the universe, the expansion from the big bang was slowed down by gravity, but as the
universe expanded, the e�ects of gravity weakened and this repulsive force (referred to as
dark energy) accelerated the expansion. The universe would appear to have a small but
strictly positive cosmological constant. It is regrettable that Einstein never knew that his
greatest mistake was just another brilliant idea.

Taking the trace of (2.21), we see that in the vacuum case, i.e. for Tab = 0, the
cosmological constant is a multiple of the scalar curvature :

Λ =
1
4
R .

2.5 Flow of a vector �eld, Lie derivative, Killing vectors

Beside the covariant derivative along a vector �eld, there is an important type of directional
derivative called the Lie derivative. It is independent of a choice of connection and is a
derivation along the �ow of a vector �eld.

2.5.1 Flow of a vector �eld

Consider on a space-time (M, g) a C1 vector �eld V , i.e. a C1 section of TM.

De�nition 2.16 (Integral curve). An integral curve of V is a curve inM that is a maximal
solution to the equation

γ′(s) = V (γ(s)) . (2.22)

By the Cauchy-Lipschitz theorem (used in open sets of Rn through local charts), we
have existence and uniqueness of maximal solutions of the Cauchy problem for (2.22).
This allows us to de�ne the propagator or �ow of the vector �eld. A more detailed use
of the machinery of the theory of ordinary di�erential equations shows that it is a local
1-parameter group of di�eomorphisms.

De�nition 2.17 (Flow). The �ow of the vector �eld V is a family of mappings ΦV (s) that
to a point p in M associate γp(s), where γp is the unique maximal solution to the Cauchy
problem

γ′p(s) = V (γp(s)) , γp(0) = p .

Remark 2.10. Since the maximal solution does not necessarily exist for all values of s, the
mapping ΦV (s) is not usually globally de�ned, except of course ΦV (0) which is the identity.
However, if ΦV (t) is well de�ned at a point p ∈M, it is de�ned in a neighbourhood of p.

Proposition 2.4. The �ow ΦV of the vector �eld V is a local 1-parameter group of C1

di�eomorphisms, i.e. it has the following properties :
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1. given s ∈ R and an open set U of M on which ΦV (s) is well de�ned, ΦV (s) is a C1

di�eomorphism from U onto V = ΦV (s)(U) ;

2. for any s1, s2 ∈ R, we have ΦV (s1)ΦV (s2) = ΦV (s1 + s2) wherever all quantities are
de�ned.

Moreover, if the vector �eld V is Ck, then the �ow ΦV of the vector �eld V is a local
1-parameter group of Ck di�eomorphisms.

We omit the proof of this result and refer to the classic theory of ordinary di�erential
equations for it. A good reference is the book by Zuily and Que�élec [27]. It is important
to understand that the second property as well as the invertibility of ΦV (t) are trivial
consequences of the uniqueness of maximal solutions of the Cauchy problem. The delicate
part of the proof is the regularity of ΦV . This amounts to proving the regularity of the
solution with respect to the intitial data.

2.5.2 Action of the �ow on tensor �elds

From here on, we shall use simpli�ed notations for the �ow of V : we denote Φ the �ow
ΦV and Φt the local di�eomorphism ΦV (t).

First, we observe that Φt acts on scalar functions on M via a mapping referred to as
the pull-back and de�ned as follows :

De�nition 2.18 (Action on scalar function). Let f : M→ R a continuous function on
M. We de�ne the pulled back function (Φt)∗f as follows

(Φt)∗f = f ◦ Φt .

We see that if we evaluate, for a given di�erentiable scalar function f the quantity

lim
t→0

1
t

((Φt)∗f − f) (p) ,

we obtain simply

df(p)
(
Φ′(0)(p)

)
= V f(p) = V a∂af(p) . (2.23)

We can de�ne a similar action on vector �elds. This action however is more naturally
de�ned as a push forward, i.e. to a vector at the point p, we associate a vector at the point
Φt(p). This is done as follows :

De�nition 2.19 (Action on vector �elds). Let X be a continuous vector �eld on M, i.e.
X ∈ C (M ; TS), we de�ne the push-forward of X by Φt (denoted (Φt)∗X) by its action
on di�erentiable functions on M ;

[((Φt)∗X) f ] (p) = [X (f ◦ Φt)] (Φ−t(p)) = [X ((Φt)∗f)] (Φ−t(p)) .

We can also de�ne a pulled back vector �eld by, instead of the push-forward mapping,
applying, applying its inverse : we denote it (Φt)∗X ;

[((Φt)∗X) f ] (p) =
[(

((Φt)∗)−1X
)
f
]
(p) = X (f ◦ Φ−t) (Φt(p)) = [((Φ−t)∗X) f ] (p) .
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The pushed forward and pulled-back vector �elds satisfy

((Φt)∗(X)) (p) = D (Φt) (Φ−t(p)) (X(Φ−t(p))) ,
((Φt)∗(X)) (p) = D (Φ−t) (Φt(p)) (X(Φt(p))) .

We can di�erentiate a vector �eld along the �ow Φt just as we did for functions. We have
for a di�erentiable vector �eld X on M :

lim
t→0

1
t

((Φt)∗X −X) = [V,X] , (2.24)

where [V,X] is the Lie bracket of the two vector �elds V and X, de�ned by

De�nition 2.20. The Lie bracket [X,Y ] of two di�erentiable vector �elds on M is de-
�ned as [X,Y ] = XY − Y X, i.e. it is simply the commutator of the two vector �elds as
di�erential operators.

We can then naturally extend the notion of pull-back to 1-forms on M.

De�nition 2.21 (Action on 1-forms). Consider a continuous 1-form ω on M, we de�ne
the pulled-back 1-form (Φt)∗ω by its action on a di�erentiable vector �eld X :

((Φt)∗ω) (X)(p) = ω ((Φt)∗X) (Φt(p)) .

The pulled-back 1-form satis�es

((Φt)∗ω) (p) = [D (Φt) (p)]∗ (ω(Φt(p)) .

The pull-back is then extended to arbitrary tensor �elds by �rst de�ning it on tensor
products of vector �elds and 1-forms and then extending it by linearity to the tensor
bundles of a given valence.

De�nition 2.22 (Action of tensor �elds). The pull-back of a tensor product of m vector
�elds and n 1-forms is simply de�ned as

(Φt)∗ (U ⊗ ...⊗ V ⊗ α⊗ ...⊗ β) = (Φt)∗U ⊗ ...⊗ (Φt)∗V ⊗ (Φt)∗α⊗ ...⊗ (Φt)∗β .

De�nition 2.23 (Lie derivative). Consider a di�erentiable tensor �eld T on M, its Lie
derivative along V is de�ned as

LV T := lim
t→0

1
t

((Φt)∗T − T ) .

Its action on scalar functions is given by (2.23) and its action on vector �elds by (2.24).
Moreover, due to the de�nition of the pull-back on tensor products, the Lie derivative
satis�es the Leibnitz rule. This is easy to check : consider two di�erentiable tensor �elds
T ans S, we have for t > 0

1
t

((Φt)∗(T ⊗ S)− T ⊗ S) =
1
t

((Φt)∗T ⊗ (Φt)∗S − T ⊗ S)

=
1
t

((Φt)∗T − T )⊗ (Φt)∗S + T ⊗ 1
t

((Φt)∗S − S)

−→ LV T ⊗ S + T ⊗ LV S as t→ 0 .
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This su�ces to characterize the action of the Lie derivative on any type of tensor �eld. In
particular, the Lie derivative of a di�erentiable 1-form on M along V

LV ωa = lim
t→0

1
t

((Φt)∗ωa − ωa) (p) = V b∇bωa + ωb∇aV
b (2.25)

can be obtained using the fact that for a di�erentiable vector �eld Xa, ωaX
a is a di�eren-

tiable scalar function and that we know the Lie derivatives of both vector �elds and scalar
functions. Of particular interest is the expression of the Lie derivative of the metric along
a vector �eld.

Proposition 2.5. The Lie derivative of the metric along a vector �eld V a is given by

LV gab = gcb∇aV
c + gac∇bV

c = 2∇(aVb) . (2.26)

Proof. As a consequence of the Leibnitz rule, we have

LV gab = V c∇cgab + gcb∇aV
c + gac∇bV

c

and (2.26) then follows from the metric-compatibility of the Levi-Civita connection.

Proposition 2.6. The Lie derivative is independent of the connection, i.e. it can be
expressed using any connection, it will remain the same.

Proof. This is clear for its action on vector �elds and scalars. Now given a vector �eld
X and a 1-form ω,

LV (ωaX
a) = ωaLVX

a +XaLV ωa ,

whence
XaLV ωa = LV (ωaX

a)− ωaLVX
a

is the sum of two terms independent of the connection. This extends to all types of tensors
by the Leibnitz rule.

De�nition 2.24 (Killing vector). A Killing vector �eld on a manifold M equipped with
a metric g (assumed di�erentiable) is a di�erentiable vector �eld Ka on M such that its
�ow leaves the metric invariant, i.e. ΦK(t)∗gab = gab, or equivalently, LKgab = 0. As a
consequence of proposition 2.5, a di�erentiable vector �eld Ka on (M, g) is Killing if and
only if Ka satis�es the Killing equation

∇(aKb) = 0 . (2.27)

2.6 Geodesics

It is a classic notion that the most direct path between two points is the straight line.
The notion of straight line however only has a meaning in a�ne spaces. We of course do
not live in an a�ne space, so this classic image is in fact wrong and even meaningless.
It is however true to a very good degree of accuracy provided the two points are not
too far from each other (wich may mean arbitrarily close to each other if the cuvature is
arbitrarily large), since a local di�eomorphism that straightens our spacetime to R4 in a
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small enough neighbourhood of these two points will be very close to the identity. In an
a�ne space, a useful notion is that of a �freely falling object�, i.e. an object that is not
accelerated. The trajectories of such objects are of course exactly the straight lines. The
advantage is that the notion of an object that is not accelerated can be extended to a
general manifold, its trajectory is then a particular type of curve referred to as a geodesic.
We have some freedom in the way we de�ne the acceleration, i.e. on how we di�erentiate
the speed vector along the curve. We choose a way of di�erentiating along the curve that
transforms a tensor of a given valence into another tensor of the same valence, it is the
so-called absolute derivative

D

Ds
:= ∇γ̇(s)

i.e. the covariant derivative along the speed vector.
This provides us with the following de�nition of a geodesic, i.e. a curve with zero

acceleration.

De�nition 2.25 (Geodesics). A geodesic on a spacetime (M, g) is a C2 curve on M (i.e.
the data of a pair (I, γ) where I is an interval and γ : I →M is a C2 function such that
γ̇(s) does not vanish on I) such that its acceleration, de�ned by D

Ds γ̇(s) = ∇γ̇(s)γ̇(s) = 0.
Expressing the covariant derivative in a coordinate basis, this immediately gives the equation
of a geodesic

d2γa

ds2
+ Γa

bc

dγb

ds
dγc

ds
= 0 .

If we consider a di�erentiable vector �eld T a that is propagated parallel along itself,
i.e. such that T a∇aT

b is colinear to T a its integral curves are geodesics. Indeed, modulo
re-parametrization, we can assume that T a∇aT

b = 0 ; the parameter of the integral curves
that gives a tangent vector �eld satisfying this is called the a�ne parameter.

The geodesic equation is a di�erential equation whose coe�cients are the Christo�el
symbols, i.e. involve �rst order derivatives of the metric. Therefore, the metric needs to be
such that its derivative is locally Lipschitz in order to ensure the existence and uniqueness
of maximal solutions by the Cauchy-Lipschitz theorem. For a C2 metric, this is naturally
guaranteed.

Remark 2.11. In euclidian space in cartesian coordinates, the Christo�el symbols are zero
and the geodesics are the straight lines. This property is shared by Minkowski spacetime
which is the subject of chapter 3.

Remark 2.12. In Riemannian signature, a geodesic between two points can be understood
as a length minimizing curve. There is no such property in Lorentzian signature (see �gure
2.1).

The de�nition of a geodesic entails the existence of a conserved quantity along such
a curve. Moreover, any Killing vector �eld will give another conserved quantity along a
geodesic.

Proposition 2.7. Consider a spacetime (M, g) whose metric is C2 (or has locally Lipschitz
�rst derivative), let γ be a geodesic. Then the quantity

g(γ̇(s), γ̇(s)) = gab(γ(s))γ̇a(s)γ̇b(s)
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Figure 2.1: In Lorentzian signature, geodesics between two points are not extrema of
the arc length. Here we consider the manifold R2 equipped with the Lorentzian metric
dt2 − dx2. The curve C1 is a geodesic but C2 and C3 are not. The length of C2 is larger
than that of C1 which is larger than that of C3. Also, C2 and C3 can be continuously
deformed to C1 whilst retaining the same ordering of lengths.
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is conserved along the curve. Moreover, if K is a Killing vector �eld on (M, g) or on an
open neighbourhood of γ, then

g(γ̇(s),K) = gab(γ(s))γ̇a(s)Kb(γ(s))

is conserved along γ.

Proof. For the �rst quantity, we have

d
ds
gabγ̇

a(s)γ̇b(s) =
(
∇γ̇(s)gab

)
γ̇a(s)γ̇b(s) + 2gabγ̇

a(s)∇γ̇(s)γ̇
b(s) = 0

since the connection is metric compatible and the curve γ is a geodesic.
Now for Ka a Killing vector �eld on (M, g),

d
ds
gabK

aγ̇b(s) =
(
∇γ̇(s)gab

)
Kaγ̇b(s) + gab

(
∇γ̇(s)K

a
)
γ̇b(s) + gabK

a∇γ̇(s)γ̇
b(s) .

The �rst term is zero since the connection is metric compatible and the third since γ is a
geodesic. As for the second term, it can be written as

gabγ̇
b(s)∇γ̇(s)K

a = gabgcdγ̇
b(s)γ̇c(s)∇dKa

= gabgcdγ̇
b(s)γ̇c(s)∇[dKa] since Ka is Killing

= −gdbgcaγ̇
b(s)γ̇c(s)∇[dKa]

= −gcaγ̇
c(s)∇γ̇(s)K

a

= −gabγ̇
b(s)∇γ̇(s)K

a by symmetry of gab .

This concludes the proof.

2.7 Exercices

Exercice 2.1. Prove property (2.24) using the de�nition of the �ow ΦV (t).

Exercice 2.2. Obtain the expression (2.25) of the Lie derivative of a 1-form.

Exercice 2.3. Prove proposition 2.27.
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Chapter 3

Minkowski spacetime

3.1 De�nition and tangent structure

Minkowski space M is R4 endowed with the Minkowski metric, whose expression in carte-
sian coordinates is given by (the speed of light being equal to 1, as is common knowledge)

η = dt2 − dx2 − dy2 − dz2 . (3.1)

Another useful expression of the metric η is in terms of spherical coordinates. It is partic-
ularly useful in relation to the Schwarzschild metric that we shall encounter in chapter 5.
Is it a straightforward calculation to show that

η = dt2 − dr2 − r2dω2 , dω2 = dθ2 + sin2 θdϕ2 , (3.2)

where the spherical coordinates (r, θ, ϕ) are related to (x, y, z) by

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r sin θ .

The metric dω2 de�ned in (3.2) is the euclidian metric on the 2-sphere.
The Minkowski metric acts on vectors at a point or vector �elds on M as follows

V = V 0 ∂

∂t
+ V 1 ∂

∂x
+ V 2 ∂

∂y
+ V 3 ∂

∂z
, W = W 0 ∂

∂t
+W 1 ∂

∂x
+W 2 ∂

∂y
+W 3 ∂

∂z
,

η(V,W ) = ηabV
aW b = V 0W 0 − V 1W 1 − V 2W 2 − V 3W 3 ,

η(V, V ) = (V 0)2 − (V 1)2 − (V 2)2 − (V 3)2 . (3.3)

Remark 3.1. Note that the tangent space to M at a given point p is R4 endowed with the
Minkowski metric, but as a vector space. Minkowski space has the structure of an a�ne
space. The tangent space at any given point will be referred to as Minkowski vector space.
We shall see in the next chapter that it is the model for the tangent space to any spacetime.

We see that for each point p ∈ M, (3.3) distinguishes three disjoint classes of tangent
vectors.

De�nition 3.1. Let p ∈ M, a vector V ∈ TpM is said to be

37
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• spacelike if η(V, V ) < 0 (the projection of V on the space directions is longer than its
time component),

• null if η(V, V ) = 0 (the time and space parts of the vector are of equal length),

• timelike if η(V, V ) > 0 (the time part of the vector is longer than its space part),

• causal (or also non-spacelike) if η(V, V ) ≥ 0.

A trajectory γ : I → M, where I is an interval of R and γ a di�erentiable function on I
is said to be

• timelike if its tangent vector γ̇(t) is timelike for each t ∈ I,

• spacelike if its tangent vector γ̇(t) is spacelike for each t ∈ I,

• null if its tangent vector γ̇(t) is null for each t ∈ I,

• causal (or non spacelike) if its tangent vector γ̇(t) is causal for each t ∈ I.

De�nition 3.2. Given p ∈ M, the set of null vectors in Tp(M) is the cone

Cp =
{
V = V 0 ∂

∂t
+ V 1 ∂

∂x
+ V 2 ∂

∂y
+ V 3 ∂

∂z
; (V 0)2 = (V 1)2 + (V 2)2 + (V 3)2

}
.

It is called the lightcone at p.

There are some useful orthogonality properties between vectors in the spacelike, time-
like and lightlike cases. They are worth writing and proving in details since the orthogo-
nality for an inde�nite symmetric 2-form is less intuitive than for a positive de�nite one.
First, let us introduce some notations that will be used extensively in the following proofs.
Let U ∈ Tp(M), we denote

U = U0∂t + U ′ ,

where U ′ is the projection of U on the spatial directions, i.e.

U ′ = U1∂x + U2∂y + U3∂z .

We shall also denote |U ′| the euclidian norm of U ′

|U ′|2 = |U1|2 + |U2|2 + |U3|2 .

Let U, V ∈ Tp(M), we denote by 〈U ′, V ′〉 the euclidian inner product of U ′ and V ′ :

〈U ′, V ′〉 = U1V 1 + U2V 2 + U3V 3 .

Proposition 3.1 (Orthogonal to a timelike vector). Let T a timelike vector at a point p
and V ∈ TpM such that η(T, V ) = 0, then V is spacelike or zero.
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Proof. We assume that V 6= 0. We know that T is timelike, i.e.

|T 0| > |T ′| .

Moreover,

η(T, V ) = T 0V 0 − 〈T ′, V ′〉 = 0 .

This implies in particular that V ′ 6= (0, 0, 0), otherwise the equality above would imply
also that V0 = 0 ad this would contradict V 6= 0. In addition, it follows that

|V 0| = 〈T ′, V ′〉
|T 0|

≤ |T ′||V ′|
|T 0|

< |V ′| .

This concludes the proof.

Remark 3.2. This means that the orthogonal in TpM to a timelike vector at p for the
metric η is a hyperplane in TpM containing only spacelike vectors.

The orthogonal to a spacelike vector is not necessarily timelike, a simple example is
given by the vectors ∂x and ∂y, but if we restrict ourselves to a plane spanned by a timelike
and a spacelike vector, then the result becomes true.

Proposition 3.2. Consider at a point p in M a spacelike vector V and a timelike vector
T . Let W a vector in the plane spanned by T and V and that is orthogonal to V , i.e.
η(W,V ) = 0, then W is timelike or zero.

Proof. The restriction of η to the plane spanned by T and V is a quadratic form whose
matrix in the basis {T, V }

A :=
(
η(T, T ) η(T, V )
η(T, V ) η(V, V )

)
is real symmetric and has negative determinant

detA = η(T, T )η(V, V )− η(T, V )2 .

Hence A has one positive and one negative eigenvalue. In the basis {V , W} (assuming
of course W 6= 0), the matrix of the quadratic form is diagonal since η(V,W ) = 0. Since
η(V, V ) < 0 and the determinant of the matrix must still be strictly negative, it follows
that η(W,W ) > 0, i.e. W is timelike.

Remark 3.3. There is an alternative way of proving this. Since η(V, V ) 6= 0, the vector
W is of the form W = µ (T + λ0V ) with µ 6= 0 and we just need to show that τ = T +λ0V
is timelike. The vector τ is orthogonal to V , hence

λ0 = −η(T, V )
η(V, V )

.

Now
η(T + λV, T + λV ) = λ2η(V, V ) + 2λη(T, V ) + η(T, T ) .
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This is a polynomial in λ with two real roots given by

λ± = −
η(T, V )±

√
(η(T, V ))2 − η(T, T )η(V, V )

η(V, V )
,

and it is positive between these two roots since η(V, V ) < 0. Moreover we have

λ0 =
1
2

(λ+ + λ−) ,

hence η(τ, τ) > 0. Note that the value λ0 such that the vector τ = T + λ0V is orthogonal
to V actually realizes the maximum of the quantity

η(T + λV, T + λV ) .

When looking at the space of vectors orthogonal to a null vector �eld, the situation
gets more unusual.

Proposition 3.3. Let V be a non-zero null vector at a point p in M. The subspace of
TpM of vectors orthogonal to V contains V ; except for the straight line generated by V ,
it is entirely composed of spacelike vectors ; it is the hyperplane tangent to the light-cone
containing V .

Proof. The fact that V is orthogonal to itself is trivial since V is assumed to be null.
The vector V can be decomposed as follows

V = V 0∂t + V ′ .

We can �nd two linearly independent vectors U and W in the hyperplane spanned by ∂x,
∂y, ∂z which are orthogonal to V ′ for the euclidian inner product on R3. Then U, V,W
are three linearly independent vectors orthogonal to V and which consequently span the
hyperplane orthogonal to V . Moreover they are mutually orthogonal and since V is null
and U and W are spacelike, it follows that any linear combination of the three is spacelike
unless it is parallel to V .

De�nition 3.3. Let S be a C1 hypersurface in M. We say that S is :

• spacelike if its normal vector at each point is a timelike vector, this means that its
tangent plane at each point is entirely composed of spacelike vectors ;

• null if its normal vector at each point is a null vector, this means that its tangent
plane at each point is composed of spacelike vectors and one null direction given by
the normal vector ;

• achronal or weakly spacelike if its normal vector at each point is a causal vector ;

• timelike if its normal vector at each point is a spacelike vector, this means that its
tangent plane at each point is generated by one timelike and two spacelike vectors ;



3.2. CAUSALITY 41

3.2 Causality

Let us consider on M the trajectory of a particle whose �experience� of time is described
by the variable t. This is a curve γ(t) = (t, x(t), y(t), z(t)). Its tangent vector is

γ̇(t) =
∂

∂t
+ ẋ(t)

∂

∂x
+ ẏ(t)

∂

∂y
+ ż(t)

∂

∂z

and
η(γ̇(t), γ̇(t)) = 1− ẋ(t)2 − ẏ(t)2 − ż(t)2 .

In the framework of classical mechanics, the vector

V (t) = ẋ(t)
∂

∂x
+ ẏ(t)

∂

∂y
+ ż(t)

∂

∂z

is understood as describing the speed of the particle at time t. At a given time t, we know
that the particle goes faster than, slower than, or at the speed of light, depending whether
|V (t)|2 = ẋ(t)2 + ẏ(t)2 + ż(t)2 > 1, |V (t)|2 < 1 or |V (t)|2 = 1. However there is nothing
unique about the choice of time parameter t, it is relative to the observer. A change of
time parameter t will change the value of the time component of γ̇ and the length of the
space part of the tangent vector will then need to be compared to some quantity other
than 1 (in fact the length of the time part) to compare the speed of the particle with that
of light. As a matter of fact, even the notion of time and space part is not well de�ned,
many other choices are possible corresponding to di�erent choices of coordinates.

In relativity, the notion that replaces that of speed vector is that of 4-velocity vector,
it is γ̇(t), the tangent vector to the trajectory of the particle. This is still a non unique
notion since its �length� changes with a change of parameter of the curve. Its direction
however is an intrinsic notion. And this gives us an intrinsic way of comparing the speed
of a particle with that of light : a particle at a given point moves faster than, slower than,
or at the speed of light depending whether the tangent vector �eld to its trajectory at that
point (measured for any choice of parameter that is not singular at that point) is spacelike,
timelike or null.

A massive particle will move along a timelike curve, a massless particle will move along
a null curve. If the particle is freely falling (free of any exterior in�uence), these curves
will be geodesics.

The geodesics on Minkowski space are straight lines. This is obvious from the expression
of the metric in cartesian coordinates since its coe�cients are constants and therefore the
connection coe�cients (Christo�el symbols) are all zero. Just like general curves, they
can be distinguinsed according to their timelike, spacelike, null, causal character, but of
course, an important di�erence is that if a geodesic is timelike at a given point, it is
timelike everywhere1. Causal geodesics can also be distinguished according to their time
orientation, a notion that needs to be de�ned �rst.

De�nition 3.4. The vector �eld ∂t de�nes a time orientation on Minkowski space. A
causal vector V at a given point p is said to be future oriented (resp. past oriented) if
V 0 = η(V, ∂t) > 0 (resp. η(V, ∂t) < 0).

1This is in fact true in any spacetime as a consequence of proposition 2.7 (see proposition 4.1) but it is
trivial in Minkowski space since all geodesics are straight lines.
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Remark 3.4. The previous de�nition is a classi�cation of causal vectors, since for such
vectors V 0 = η(V, ∂t) cannot be zero except if V = 0.

Remark 3.5. We have only de�ned the notion of future or past oriented for causal vectors
although we could have extended it to all vectors such that η(V, ∂t) 6= 0. We shall see that
only causal vectors have an intrinsic time orientation. For spacelike vectors, the notion
would depend on the vector �eld we choose as reference.

In fact we can de�ne a time orientation using other vector �elds. The idea is that such
a vector �eld must choose one out of the two components of the light-cone at each point,
this will be labeled as the future component ; moreover it must do this is a manner that is
consistent throughout the whole of Minkowski space. Such a vector �eld must therefore be
continuous and nowhere vanishing so as to prevent it from �jumping� from one component
to an incompatible one. These intuitive comments are of course far from rigorous but they
seem to indicate that Minkowski spacetime will only have two time orientations, depending
whether we choose to label as future the components of the light-cones containing ∂t, or
the others. Let us now give a proper de�nition of time orientation and prove this claim
rigorously.

De�nition 3.5 (Time orientation). A globally de�ned nowhere vanishing continuous time-
like vector �eld T a on M de�nes a time orientation on M. For such a choice of vector �eld,
a causal vector V at a given point p is said to be future oriented (resp. past oriented) if
η(V, T (p)) > 0 (resp. η(V, T (p)) < 0).

Proposition 3.4. Consider a timelike vector T = T 0∂t + T 1∂x + T 2∂y + T 3∂z and a non-
zero causal vector V = V 0∂t + V 1∂x + V 2∂y + V 3∂z at a point p in M. Then the sign of
η(T, V ) is that of T 0V 0.

Proof. We have T 0 6= 0 since T is timelike and V 0 6= 0 since V is non-zero and causal.
Then

η(p)(T, V ) = T 0V 0 − 〈T ′, V ′〉

= T 0V 0

(
1− 〈T ′, V ′〉

T 0V 0

)
.

Now ∣∣∣∣〈T ′, V ′〉
T 0V 0

∣∣∣∣ ≤ |T ′|
|T 0|

|V ′|
|V 0|

< 1

since T is timelike and V is non-zero an causal. Hence the result.
This has the important following consequence.

Corollary 3.1. Consider two time orientations of M determined respectively by two vector
�elds T a and τa. Then one of the two following assertions is true :

(�) for any causal vector V at a given point, the signs of η(V, T ) and η(V, τ) are the
same ; the orientations are then said to be the same ; this corresponds to the case
where η(T, τ) > 0 ;

(�) for any causal vector V at a given point, the signs of η(V, T ) and η(V, τ) are opposite ;
the orientations are then said to be opposite ; this corresponds to the case where
η(T, τ) < 0.
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Proof. Since the vector �elds T a and τa are timelike and continuous, then τ0 and T 0

are nowhere vanishing and cannot change sign. The result then follows from proposition
3.4.

This means that there are two time-orientations only on M, the one given

by ∂t and the one given by −∂t. We choose the orientation given by ∂t.

Proposition 3.5. Consider a spacelike vector V at a point p. Then there exist two future
oriented timelike vectors T and τ at p such that η(V, T ) > 0 and η(V, τ) < 0.

Remark 3.6. This shows that the time orientation of a spacelike vector V has no meaning.
In fact there is even a timelike vector T at p such that η(V, T ) = 0 as was clearly shown
by proposition 3.2.

Proof of proposition 3.5. We denote

V = V 0∂t + V 1∂x + V 2∂y + V 3∂z .

Consider for λ ∈ R the vector T = T (λ) = ∂t + λV . Now

η(T (λ), V ) = V 0 + λη(V, V ) .

We know that η(V, V ) < 0 since V is spacelike. For λ0 = −V 0/η(V, V ), the vector T (λ0)
is orthogonal to V and is in the plane spanned by V , a spacelike vector, and ∂t, a timelike
vector. Hence it is timelike by proposition 3.2. It is also future oriented, indeed we have

η(∂t, T (λ0)) = 1 + λ0V
0 = 1− (V 0)2

η(V, V )
> 0 .

By continuity, T (λ) is timelike and future oriented for λ close to λ0. Moreover, since
η(T (λ), V ) is a�ne in λ and vanishes for λ = λ0, it changes sign around λ0. We can
therefore chose ε > 0 small enough such that T (λ0 ± ε) are both timelike and future
oriented and η(T (λ0 ± ε), V ) have opposite signs.

Proposition 3.6. Consider a causal geodesic γ(s) on M. Its time orientation is the same
everywhere along the curve.

Proof. There are at least two trivial ways of proving this result. First, the tangent
vector to the geodesic is constant (always the same expression in the coordinate basis
(t, x, y, z)), hence its time orientation is always the same. Second, the vector ∂t is clearly
a Killing vector �eld on M, hence the quantity η(γ̇(s), ∂t) is constant along the curve.

3.3 Symmetries, Killing vectors

The symmetry group of Minkowski spacetime (preserving the metric, orientation and time-
orientation) is the Poincaré group. It is the 10-dimensional group generated by the four
cartesian coordinate translations, the three space rotations and the three boosts or hy-
perbolic rotations. The in�nitesimal generators of these transformations provide the 10
independent Killing vector �elds of Minkowski spacetime :

translations : ∂t, ∂x, ∂y, ∂z ;
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rotations : x∂y − y∂x, y∂z − z∂y, z∂x − x∂z ;

boosts : x∂t+t∂x, y∂t+t∂y, z∂t+t∂z, which are sometimes viewed as generating rotations
in the planes (it, x), (it, y) and (it, z).

3.4 Exercices

Exercice 3.1. Obtain the expression (3.2) of the Minkowski metric in spherical coordinates
starting from its expression (3.1) in cartesian coordinates.

Exercice 3.2. Calculate the Christo�el symbols associated to the Minkowski metric for
Cartesian coordinates and for spherical coordinates. Conclude that the Christo�el symbols
are not a tensor �eld.

Exercice 3.3. Prove corollary 3.1 using proposition 3.4.

Exercice 3.4. Prove that the 10 vectors listed in the last section of this chapter are indeed
Killing vector �elds.



Chapter 4

Curved spacetime

4.1 Tangent space, lightcones

As we have seen in the de�nition of Lorentzian metrics, if (M, g) is a spacetime, then we
can �nd in the neighbourhood of each point an orthonormal basis. In such a basis, the
metric g is described by the matrix

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

The tangent space at each point is therefore a copy of Minkowski vector space. This
gives us natural de�nitions of timelike, spacelike, null and causal vectors and a similar
classi�cation for curves and hypersurfaces.

De�nition 4.1. Let p ∈ M, a vector V ∈ TpM is said to be

• spacelike if g(V, V ) < 0,

• null if g(V, V ) = 0,

• timelike if g(V, V ) > 0,

• causal (or also non-spacelike) if g(V, V ) ≥ 0.

The de�nitions of timelike, spacelike, etc... for curves and hypersurfaces follow exactly
as they do in Minkowski space. For geodesics, as a consequence of proposition 2.7, we have
the following property :

Proposition 4.1. Consider a geodesic γ(s) in a spacetime (M, g), if γ is timelike (resp.
spacelike, resp. null., resp. causal) at a given point, it is timelike (resp. spacelike, resp.
null., resp. causal) everywhere.

45
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4.2 Causality

4.2.1 Time orientation

De�nition 4.2. A time orientation on a spacetime (M, g) is a globally de�ned nowhere
vanishing continuous timelike vector �eld on M. If a time orientation exists on (M, g),
the spacetime is said to be time orientable.

De�nition 4.3. Let (M, g) be a time orientable spacetime and T a a time orientation.
A causal vector V at a point is then said to be future oriented (resp. past oriented) if
gabV

aT b > 0 (resp. gabV
aT b < 0).

Proposition 4.2. Let (M, g) be a time orientable spacetime on which we consider T a and
τa two time orientations. Then one of the two following assertions is true :

(�) for any causal vector V at a given point, the signs of gabV
aT b and gabV

aτ b are the
same ; the orientations are then said to be the same ;

(�) for any causal vector V at a given point, the signs of gabV
aT b and gabV

aτ b are
opposite ; the orientations are then said to be opposite.

Proof. We consider an open covering {Ωi}i∈I ofM such that on each Ωi we can de�ne
globally an orthonormal frame

e0 :=
T

g(T, T )
, e1 , e2 , e3 .

Then in this frame the metric g is the Minkowski metric on Ωi and the result follows on
each Ωi from the Minkowski case. This extends to the whole of M using the fact that
{Ωi}i∈I is a covering.

Proposition 4.3. Let (M, g) be a time orientable spacetime. A spacelike vector has no
time orientation. More precisely, given V a spacelike vector at a point p, there exist two
choices T a and τa of time orientation on M such that gabV

aT b > 0 and gabV
aτ b < 0.

Proof. We work in a small open neighbourhood of p in which whe can �nd a global
orthnormal frame. The result follows from the same result for the Minkowski metric inside
Ω. We then merely need to extend the two timelike vector �elds to timelike vector �elds
de�ned on the whole of M. Here is a completely explicit version of the proof.

We consider τa a continuous nowhere vanishing timelike vector �eld onM. Let U be a
small enough neighbourhood of p such that there exists an orthonormal basis for g on U .
We can then choose another orthonormal basis {eaa}a=0,1,2,3 such that

e0
a =

τa√
gabτaτ b

.

We de�ne on U the vector �eld V a whose components in the basis {eaa} are those of
the vector V in the basis {eaa(p)} of TpM. Let χ a smooth compactly supported scalar
function on M with support in U , such that 0 ≤ χ ≤ 1 and χ(p) = 1 ; we de�ne the
vector �eld W on M by W a = χV a in U and W a∂a = 0 outside of U . Finally, for λ ∈ R,
we consider the vector �eld T a(λ) = τa + λW a. This is a continuous vector �eld on M.
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Outside the support of χ, T a(λ) = τa and is therefore timelike. Inside the support of χ,
we have

gabT
a(λ)W b = gabτ

aW b + λgabW
aW b = χgabτ

aV b + λχ2gabV
aV b

and at the point p, this takes the form

g(p)(T (λ)(p),W (p)) = g(p)(τ(p), V ) + λg(p)(V, V ) .

This vanishes for

λ = λ0 := −g(p)(τ(p), V )
g(p)(V, V )

which is positive if g(p)(τ(p), V ) > 0 and negative if g(p)(τ(p), V ) < 0. For this value of
λ, the vector T (λ0) at p is in the plane spanned by τa and V and is orthogonal to V , it is
therefore timelike, i.e. g(p)(T (λ0)(p), T (λ0)(p)) > 0. Moreover,

g(p)(τ(p), T (λ0)(p)) = g(p)(τ(p), τ(p)) + λ0g(p)(τ(p), V )

= g(p)(τ(p), τ(p))− [g(p)(τ(p), V )]2

g(p)(V, V )
> 0

since τ is timelike and V spacelike ; i.e. the vector T (λ0) at point p is future oriented with
respect to τ . By continuity, τa +λ0V

a is timelike and future oriented with respect to τa in
a small enough neighbourhood of p, and since T a interpolates between τa and τa + λ0V

a,
it is also timelike and future oriented with respect to τa in a small enough neighbourhood
of p. Then provided the support of χ is small enough, it follows that T a is timelike and
future oriented with respect to τa on M. By continuity, for ε > 0 small enough, this is
still true of T a(λ0 + ε). Then T a(λ0 + ε) and T a(λ0 − ε) are two timelike vector �elds
that are future oriented with respect to τa such that g(p)(T a(λ0 ± ε)(p), V ) have opposite
signs.

Proposition 4.4. Let (M, g) be a time orientable spacetime with a time orientation given
by a vector �eld T a. Consider a causal geodesic γ(s) on M, then its time orientation is
the same at all times.

Proof. The function s 7→ g(γ̇(s), T ) is continuous on the interval I on which the
parameter s varies. Besides it can never be zero since the vector γ̇(s) cannot vanish (unless
it is always zero) or become spacelike (since the geodesic is causal by assumption).

An important notion is that of the domain of dependence of a set :

De�nition 4.4. Let (M, g) be a time orientable spacetime on which a time orientation has
been chosen. We consider a set A in M. The future (resp. past) domain of dependence of
A in (M, g) is the set of points of M that can be reached from a point of A along a future
(resp. past) oriented causal curve. These are often merely referred to as the future or the
past of A. The domain of dependence of A is the reunion of its future and past domains
of dependence.
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4.2.2 Global hyperbolicity

The notion of global hyperbolicity is fundamentally related to that of the Cauchy prob-
lem. Of all the equivalent de�nitions that have been proposed for a globally hyperbolic
spacetime, the �rst one due to Leray, the clearest is certainly that which R.P. Geroch put
forward in 1970 [10]. The fundamental de�nition is that of a Cauchy hypersurface.

De�nition 4.5 (Cauchy hypersurface). Let (M, g) be a time orientable spacetime. A
Cauchy hypersurface on (M, g) is a hypersurface Σ satisfying :

1. Σ is spacelike ;

2. every inextendible timelike curve intersects Σ at exactly one point (which entails in
particular that the domain of dependence of Σ is M).

We see that this is an adequate surface on which to impose initial data for covariant
equations (a covariant equation on a Lorentzian space-time will necessarily be a general-
ization to the case of a curved spacetime of covariant equations on Minkowski space, which
are hyperbolic equations), since they propagate the information at �nite speed lower than
or equal to the speed of light, the condition that the domain of dependence of Σ should
be the whole spacetime is exactly what ensures that by specifying some data on Σ, we
have enough information to propagate the solution to the whole spacetime. Moreover, the
�rst and third conditions are here to guarantee that the information propagated along
causal geodesics does not come back to a point where the solution is already determined,
thus creating some possible incompatibility. A globally hyperbolic spacetime as de�ned by
Geroch is simply a spacetime that admits a Cauchy hypersurface.

De�nition 4.6. A spacetime (M, g) is said to be globally hyperbolic if it admits a Cauchy
hypersurface.

So globally hyperbolic spacetimes are essentially the spacetimes for which the Cauchy
problem makes sense. The spacetimes in which it is hardest to make any sense at all of the
Cauchy problem are called totally vicious spacetimes, they are such that any point can be
reached from any other point in the spacetime along a future oriented timelike curve. An
example of a totally vicious part of a spacetime is the inner part of a Kerr black hole as
we shall see in chapter 7.

In fact, global hyperbolicity has stronger consequences : the existence of a smooth time
function t whose level hypersurfaces Σt are all Cauchy hypersurfaces and are di�eomorphic
to a �xed 3-surface Σ. For a long time, the only available proof of this result was due to
Geroch and his construction only guaranteed the existence of a continuous time function
whose level hypersurfaces were homeomorphic to a �xed hypersurface. The work of Bernal
and Sanchez [1, 2] proved that the time function can be chosen smooth when the metric
is smooth. Their result in fact gives a Ck time function when the metric is Ck. We will
assume that the metric and the time function are C∞ for simplicity, we will not consider
here situations in which the precise regularity of the metric and the time function may be
crucial.

So it turns out that global hyperbolicity (i.e. the existence of a single smooth Cauchy
hypersurface) entails the existence of a complete foliation of spacetime by smooth Cauchy
hypersurfaces which are the level hypersurfaces of a smooth time function. This can then
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be used to decompose the geometry into space and time parts. This is referred to as a
3 + 1 decomposition.

4.3 3+1 decomposition, stationarity, staticity

We consider a smooth globally hyperbolic spacetime (M, g). Let t be a smooth time
function onM inducing a foliation by its level-hypersurfaces {Σt}t∈R such that the hyper-
surfaces Σt are all Cauchy hpersurfaces and are di�eomorphic to a given 3-surface Σ.

A time function is de�ned as follows :

De�nition 4.7. A time function on M is a continuous function t on M which is strictly
increasing on any future-oriented causal curve.

The function t being smooth, this de�ntion can be expressed in an equivalent way.

Proposition 4.5. A smooth function t on M is a time function if and only if its gradient
∇t is a smooth timelike vector �eld on M.

Proof. First we see that t is a smooth time function if and only if for any causal
non-zero vector V at any given point p, we have dt(V ) > 0. This is equivalent to saying
that g(∇t, V ) > 0. Consider at a given point p a vector W and D+(p) the set of all
future-oriented non-zero causal vectors at p. We have seen that

• if W is future-oriented and timelike, then g(W,V ) > 0 for all V ∈ D+(p) ;

• if W is past-oriented and timelike, then g(W,V ) < 0 for all V ∈ D+(p) ;

• if W is spacelike, then g(W,V ) changes sign when V spans D+(p) ;

• ifW is future-oriented and light-like, then g(W,V ) ≥ 0 for all V ∈ D+(p) and vanishes
for V colinear to W ;

• if W is past-oriented and light-like, then g(W,V ) ≤ 0 for all V ∈ D+(p) and vanishes
for V colinear to W .

So we see that the only case where we have g(W,V ) > 0 for all V ∈ D+(p) is when W
future-oriented and timelike.

We use the foliation to perform a 3+1 (or space/time) decomposition of the metric.
Let T a be the future-pointing timelike vector �eld normal to Σt, normalized to 1

T aTa = 1,

i.e.

T a =
1
|∇t|

∇at , where |∇t| =
(
gab∇at∇bt

)1/2
. (4.1)

At each point p ∈M, the metric g can be decomposed into its orthogonal parts along T a

and (T a)⊥ = TpΣt :

gab = TaTb − hab (4.2)
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where −h is the restriction of g to TpΣt, whence

T ahab = 0 , (4.3)

and the 1-form Ta is given by

Tadxa =
1
|∇t|

∇atdxa =
1
|∇t|

dt . (4.4)

We de�ne the lapse function N(p) by

Tadxa = Ndt , i.e. N =
1
|∇t|

(4.5)

and the decomposition of the metric g then takes the form

g = N2dt2 − h. (4.6)

We now choose to de�ne the product structure using the timelike vector �eld ∇at (or equiv-
alently T a), the vector �eld ∂/∂t is then de�ned independently of the choice of coordinates
on Σ and is everywhere orthogonal to Σt. More explicitely, we have(

∂

∂t

)a

= NT a, (4.7)

whence

hab

(
∂

∂t

)a

= 0. (4.8)

For this choice of product structure, let us consider a local coordinate system x0 =
t , x1, x2, x3 on M ' R × Σ. From (4.8), we infer that the expression of h in these co-
ordinates is as follows

habdxadxb =
3∑

a,b=1

hab(t, x1, x2, x3)dxadxb.

Thus h is naturally interpreted as a time-dependent Riemannian metric on Σ.
We use the decomposition of the metric to project the connection ∇a along T a and

along (T a)⊥. We obtain

∇a = TaT
b∇b − ha

b∇b = Ta∇T + Da, (4.9)

where ∇T = T a∇a is the covariant derivative along T
a and Da = −ha

b∇b is the part of ∇a

orthogonal to T a : T aDa = 0. Da is the four-dimensional covariant derivative restricted
(by composition with the projection operator −ha

b) to act tangent to Σt. It di�ers from
the Levi-Civita connection on (Σt, h(t)) by a combination of the extrinsic curvature (or
second fundamental form) of the leaves of the foliation. In particular DaTb = Kab = K(ab)

is the extrinsic curvature. More precisely we have

Kab = DaTb = ha
chb

d∇cTd = −LThab (4.10)
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and obviously T aKab = 0.
Let us prove (4.10). The second fundamental form K of Σt is de�ned as

Kabv
awb = g(∇vT,w) = gbcv

awb∇aT
c = vawb∇aTb

for any two tangent vectors v and w to Σt, i.e. Kab is the restriction tangent to Σt of ∇aTb.
This reads

Kab = ha
chb

d∇cTd = −hb
dDaTd =

(
gb

d − TbT
d
)

DaTd = DaTb − TbT
dDaTd

= DaTb −Da

(
TbT

dTd

)
+ T dTdDaTb + TbTdDaT

d

= DaTb + TbTdDaT
d .

Adding the �rst and third lines above and dividing by 2, we get Kab = DaTb.

4.4 Stationarity, staticity

De�nition 4.8. A spacetime is said to be stationary if it admits a globally de�ned timelike
Killing vector �eld. It is said to be static if it admits a globally de�ned Killing vector �eld
which is orthogonal to a family of spacelike hypersurfaces.

Remark 4.1. Staticity simply means that the distribution of hyperplaces orthogonal to
the Killing vector �eld is integrable. The integral hypersurfaces are necessarily spacelike
and foliate the spacetime. They are not necessarily Cauchy hypersurfaces however, see for
example the block III of a subextremal Reissner-Nordstrøm black hole in chapter 6. If we
perform a 3 + 1 decomposition of the spacetime using this foliation, the lapse function N
and the metric h will be independent of t and the extrinsinc curvature will vanish.
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Chapter 5

The Schwarzschild metric

When Karl Schwarzschild obtained his explicit solution of the Einstein vacuum equations,
he got the expression (5.1) given below, in the coordinate system now referred to as
Schwarzschild coordinates. What people found immediately worrying was the fact that
the metric was singular not only at the origin but worse, on a sphere of positive radius.
The solution was quickly dismissed as physically irrelevent because of this singularity. Ed-
dington [7] was the �rst to realize that the sphere was not a singularity of the metric
but merely a coordinate singularity. He found a coordinate system which allowed him
to give the correct interpretation of the physical meaning of the sphere. Finkelstein [9]
subsequently rediscovered this coordinate system in 1958, hence the name of Eddington-
Finkelstein coordinates. After Oppenheimer and Snyder proposed a model for the collapse
of a star where it appeared that the phenomenon could go well beyond white dwarfs and
create a singularity, people suddenly remembered Schwarzschild's solution and the study
of what John Wheeler would call black holes a few years later really started. Kruskal
and Szekeres [14] completed the picture and built the maximal analytic extension on the
Schwarzschild metric.

The Schwarzschild metric is expressed (in a coordinate system (t, r, ω) referred to as
Schwarzschild coordinates), on Rt×]0,+∞[r×S2

ω as

g = F (r)dt2 − F (r)−1dr2 − r2dω2 , dω2 = dθ2 + sin2 θd2ϕ , F (r) = 1− 2M
r

, (5.1)

where m is the mass of the black hole and dω2 is the euclidian metric on the 2-sphere.
Expressed in the form (5.1), this metric appears to have two singularities corresponding
to r = 2M and r = 0. The sphere {r = 2M}, referred to as the event horizon, is merely a
coordinate singularity, the metric can be extended analytically through it, while the origin
{r = 0} which is a true curvature singularity. The horizon separates the space-time in two
domains :

• the exterior of the black hole {r > 2M} is a static domain where ∂/∂t is timelike and
∂/∂r spacelike ;

• the interior of the black hole {r < 2M}, is a dynamic region where ∂/∂t is spacelike,
∂/∂r timelike, so r should be thought of as a time variable inside the black hole, it is
therefore oriented ; the usual understanding of a black hole says that things can fall
into it but not come out of it ; this would correspond to the inertial frames in the

53
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Figure 5.1: Pro�le of the light cones outside and inside the black-hole in the (t, r)-plane.
The vectors V ± = ∂t ± F∂r correspond to the upper parts of the cones.

interior being dragged towards the singularity at {r = 0}, i.e. −∂/∂r being future
oriented, but one may just as well consider the reverse time orientation which would
correspond to a white hole ; nothing at this point indicates that one orientation is
preferable to the other.

The two domains are globally hyperbolic. The surfaces

{t}×]2M,+∞[×S2
θ,ϕ

are Cauchy hypersurfaces for the exterior and

Rt × {r} × S2
θ,ϕ

are Cauchy hypersurfaces for the interior.

The shape of the lightcones outside and inside the black-hole is well described by the
position of the null vectors

V ± :=
∂

∂t
+ F (r)

∂

∂r
.

The vectors V + and V − get closer to each other as one approaches the horizon from the
inside or the outside. The situation is however very di�erent on either side of the horizon :
outside the black hole, the light cones get narrower as one approaches the horizon, whereas
inside they get wider (see �gure 5.1).
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5.1 Connection and curvature

In the Schwarzschild coordinates (t, r, θ, ϕ), the non zero Christo�el symbols of the Levi-
Civita connection are

Γ0
01 =

M

r(r − 2M)
, Γ1

00 =
M(r − 2M)

r3
, Γ1

11 = − M

r(r − 2M)
,

Γ1
22 = −(r − 2M) , Γ1

33 = −(r − 2M) sin2 θ ,

Γ2
12 = Γ3

13 =
1
r
, Γ2

33 = − sin θ cos θ , Γ3
23 = cot θ ,

and the non-zero components of the Riemann tensor

R0101 = −M(r − 2M)
r2

sin2 θ , R0202 =
2M
r3

, R0303 = −M(r − 2M)
r2

,

R1212 =
M

r − 2M
sin2 θ , R1313 = −2Mr sin2 θ ,

R2323 =
M

r − 2M
.

If, instead of the Schwarzschild coordinate basis, we evaluate the components of the Rie-
mann tensor with respect to an orthonormal basis with vectors proportional to the coordi-
nate basis vectors, namely (adopting Chandrasekhar's notations for frame indices between
brackets)

e(0)
a∂a =

1√
F

∂

∂t
, e(1)

a∂a =
√
F
∂

∂r
, e(2)

a∂a =
1
r

∂

∂θ
, e(3)

a∂a =
1

r sin θ
∂

∂ϕ
,

we �nd

R1010 = −R3232 =
2M
r3

, R3131 = R1212 = R3030 = −R2020 =
M

r3
,

and we see that the curvature, expressed in this frame, blows up at {r = 0} but not at the
horizon.

Remark 5.1. Of course, if we express the components of the Riemann tensor with respect
to the Schwarzschild coordinate basis, its components will be singular at r = 0 but also at
r = 2M , as can readily be seen from the expression of the metric. This does not mean
anything since the basis is not orthonormal. Orthonormality however is not enough to
guarantee that the explosion of the coe�cients of the curvature tensor corresponds to a real
explosion of the curvature and not a singularity on the basis ; a basis could be singular by
having an angular momentum that becomes in�nite locally.

A more usual way of seeing whether the curvature is singular is to calculate the curvature
scalar which is an intrinsic quantity and is de�ned as follows :

gaegbfgcigdjRabcdRefij = RabcdR
abcd .

It is easily calculated in the orthonormal frame above using the symmetries of the Riemann
tensor :

RabcdR
abcd = 32

M2

r6
.
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5.2 Symmetries, Killing vectors, Birkho�'s theorem

Schwarzschild's spacetime has a four-dimensional space of global Killing vector �elds, gen-
erated by

∂t , sinϕ∂θ + cot θ cosϕ∂ϕ , cosϕ∂θ − cot θ sinϕ∂ϕ , ∂ϕ ,

which are the timelike (outside the black hole) Killing vector �eld ∂t already mentionned
above and the three generators of the rotation group. In other words, the symmetry group
of Schwarzschild's spacetime is R× SO(3).

Schwarzschild's spacetime is the unique spherically symmetric and static solution of the
Einstein vacuum equations. It is remarquable that if we remove the staticity assumption,
Schwarzschild's geometry still remains the only solution. This is Birkho�'s theorem from
1923 [3] and which in fact says even a little more than this since it is a local result (or
perhaps one should say semi-local since the assumption of spherical symmetry requires
some sort of globality).

Theorem 5.1 (Birkho�, 1923). If a given spacetime is spherically symmetric and satis�es
the Einstein vacuum equations, then it is a part of Schwarzschild's spacetime.

An important consequence of this theorem is that the spacetime outside a spherical
uncharged star in an empty universe is Schwarzschild's spacetime.

5.3 The exterior of the black hole

We �rst consider the Schwarzschild geometry from the point of view of an observer static
with respect to in�nity. Such observers only see the exterior of the black hole and their
perception of space-time is described by the time function t of the Schwarzschild coordinates
outside the black hole. To their eyes, light rays falling into the black hole slow down
in�nitely as they approach the horizon and never cross it. One way of seeing this is to
calculate the radial null geodesics.

Indeed, the fastest way of falling into the black hole, since the spacetime is spherically
symmetric (i.e. in particular without rotation), is to go towards it radially and at the
speed of light. Let us �rst evaluate the radial null directions. A radial vector at a given
point (t, r, θ, ϕ) is of the form

V = α∂t + β∂r .

For it to be null, α and β must satisfy

β

α
= F

since

g(V, V ) = α2F − β2F−1 .

So the two future oriented1 radial null directions at a given point outside the black hole
are those of the vectors

V ± = ∂t ± F∂r .

1Future-oriented provided we choose outside the black hole the time orientation given by ∂t.
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The apparent radial speed of these vectors for an observer static at in�nity and measured
using the variable r is ±F (r), it is ±1 at in�nity and slows down continuously to zero as
one considers points closer and closer to the black hole horizon. Moreover, their integral
curves are geodesics :

Proposition 5.1. The radial null vectors V ± satisfy

∇V +V + =
2M
r2

V + , ∇V −V − = −2M
r2

V − .

Proof. Let us check this property for V +. Dropping the �+� superscript for simplicity,
using the values of the Christo�el symbols given above, we have

∇V V
a∂a = V b∇bV

a∂a

= V 0∇0V
a∂a + V 1∇1V

a∂a

= ∂t(V a)∂a + Γa
0bV

b∂a + F∂r(V a)∂a + FΓa
1bV

b∂a

= 0 + Γ0
01V

1∂t + Γ1
00V

0∂r + F∂r(V 1)∂r + FΓ0
10V

0∂t + FΓ1
11V

1∂r

=
MF−1

r2
F∂t +

MF

r2
∂r + F

2M
r2

∂r + F
MF−1

r2
∂t − F

MF−1

r2
F∂r

=
2M
r2

V .

The calculation is absolutely similar for V − and left as an exercice.
We note that the t, r-speed of radial light rays slows down as they approach the horizon.

The question is whether this slowing down is strong enough to make t non-integrable along
their worldlines. The answer is clearly yes since∫ R

2M

dr
F (r)

=
∫ R

2M

rdr
r − 2M

= +∞ for any R > 2M .

This can be done in a more explicit way by introducing the Regge-Wheeler variable

r∗ = r + 2MLog(r − 2M) (5.2)

which varies from −∞ to +∞ as r varies from 2M to +∞. It satis�es

dr∗
dr

= F−1

and the metric g takes the form

g = F
(
dt2 − dr2∗

)
− r2dω2.

The radial null vectors take the expression

V ± = ∂t ± ∂r∗

and their integral lines parametrized by r∗ are the straight lines

γ±C,ω0
(r∗) = {(t, r∗, ω) ; ω = ω0 , t = ±r∗ + C} , C ∈ R , ω0 ∈ S2 .
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The horizon {r = 2M} (corresponding to r∗ → −∞) is reached in in�nite time t. A
remarkable consequence of this property is that if we choose for a covariant �eld equation
(Dirac, Maxwell, or the wave equation for instance) some initial data at time t = 0 whose
support is contained in {r ≥ 2M + ε}, ε > 0, then the support of the solution will only
reach the horizon when t becomes in�nite.

The intuitive description of a black hole tells us that the more we approach the horizon
from the exterior, the harder it becomes to escape the attraction, until at the horizon, even
a photon cannot escape anymore. But it is easier and easier to go towards the black hole.
In terms of light-cones, this seems to indicate a picture where the lightcones are tilted
towards the horizon and become tangent to the horizon as we reach it. When representing
the lightcones in the Schwarzschild coordinates however, this does not appear to be correct
after all. How do we solve this canondron? We will see that the intuitive picture has
some degree of realism when we build the maximal analytic extension of the Schwarzschild
spacetime, which gives the correct picture of the horizon.

An important consequence of this remark is that the interior of the black hole and
the exterior should not be considered as co-existing simultaneously for the time t, in other
words, a t = constant slice for r ∈]0,+∞[ has no physical meaning whatsoever. Such hyper-
surfaces will be represented and put in their proper perspective once we have constructed
the maximal extension of Schwarzschild's spacetime.

5.3.1 The spacelike geometry of the exterior of the black hole

The exterior of the black hole is globally hyperbolic. We consider the foliation by Cauchy
hypersurfaces induced by the time function t, i.e. the slices are

Σt = {t}×]2M,+∞[r×S2
ω, t ∈ R,

with the induced Riemannian metric

h = F−1dr2 + r2dω2. (5.3)

The 3+1 decomposition of the geometry is given by (calling M the exterior of the black
hole) :

M = Rt × Σ , Σ =]2M,+∞[r×S2
ω , g = Fdt2 − h =

N2

2
dt2 − h (5.4)

with the lapse function N =
√

2F 1/2. The exterior of the black hole is static : ∂
∂t is a

Killing vector �eld (since g does not depend on t), is timelike outside the black hole and
is everywhere orthogonal to the Cauchy hypersurfaces Σt. The time orientation is chosen
by deciding that ∂

∂t is future pointing and the normalized vector �eld T a is then

T a∂a =
√

2F−1/2 ∂

∂t
=

2
N

∂

∂t
.

We consider a generic spacelike slice (Σ, h). The metric h appears singular at r = 2M .
This is merely due to the choice of coordinates ; introducing as the new radial variable
u(r) the h-distance to the horizon, we show that (Σ, h) is a smooth manifold and that the
horizon H = {2M}r × S2

θ,ϕ is a smooth boundary.
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Given p = (r, ω) ∈ Σ, the h-distance from p to the horizon is given by

u(r) =
∫

[2M,r]
F−1/2(s)ds =

∫
[2M,r]

√
s√

s− 2M
ds . (5.5)

This distance is �nite and H thus appears as the boundary of (Σ, h). Since

du
dr

= F−1/2,

the metric h can be written as

h = du2 + r2dω2 (5.6)

and

Σ =]0,+∞[u×S2
ω .

The function u(r) is continuous and strictly increasing from [2M,+∞[ onto [0,+∞[, it is
C∞ on ]2M,+∞[ but it is not di�erentiable at 2M . However, the inverse function satis�es

Lemma 5.1. The function u 7−→ r(u) is C∞ on [0,+∞[ and all its derivatives are uni-
formly bounded on [0,+∞[. In particular, the �rst derivative dr

du = F 1/2 (and therefore
also the lapse function) is uniformly bounded as well as all its derivatives on [0,+∞[.

Proof of lemma 5.1 : the �rst and second derivatives F 1/2 andM/r2 are continuous on

[0,+∞[u whence r is C2 on [0,+∞[u. If r is Ck on [0,+∞[u, then so is the second derivative
and the lemma is thus proved by induction. 2

This entails that h is smooth on Σ̄ = [0,+∞[u×S2
ω ; (Σ̄, h) is a smooth manifold with

boundary. Moreover

Theorem 5.2. The metric h is uniformly equivalent to the euclician metric on the exterior
of the unit ball in R3

du2 + (1 + u)2dω2 .

Proof. We see that

1 + u

r
→ 1

2M
as r → 2M ,

1 + u

r
→ 1 as r → +∞ since F (r) → 1

and moreover (1 + u)/r is continuous on [2M,+∞[r, hence, there exists C > 0 such that

C <
1 + u

r
<

1
C

for 2M ≤ r < +∞ .

This proves the theorem.
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5.3.2 Bending of light-rays : the photon sphere

We consider an extreme example of bending of light rays by gravity in the schwarzschild
geometry : the photon sphere, which is a sphere of trapped geodesics around the black
hole. Let us consider in the equatorial plane a null vector that is purely rotational, i.e. of
the form V = a∂t + b∂ϕ, for example, we can take

V = r∂t +

√
1− 2M

r
∂ϕ .

The integral curves of this vector �eld are circles in the equator (helices if we consider the
time as well as space variables) whose tangent vectors are null. What is the acceleration
of such curves? This is the following simple calculation :

∇V V = V a∇aV
b∂b =

(
V a∇aV

b + Γb
acV

c
)
∂b

=
(
V 0∂tV

b + V 3∂ϕV
b + V 0Γb

0cV
c + V 3Γb

3cV
c
)
∂b

=
(
V 0Γb

0cV
c + V 3Γb

3cV
c
)
∂b

= r
(
Γ0

01V
1∂t + Γ1

00V
0∂r

)
+

√
1− 2M

r

(
Γ1

33V
3∂r + Γ3

31V
1∂ϕ + Γ3

32V
2∂ϕ

)
= rΓ1

00V
0∂r +

√
1− 2M

r
Γ1

33V
3∂r

=
(
r2
M

r3
(r − 2M) +

(
1− 2M

r

)
(−r)

(
1− 2M

r

))
∂r

=
(

1− 2M
r

)
(3M − r)∂r .

As could be expected, the acceleration is purely radial. It points towards the black hole if
r > 3M , away from the black hole if r < 3M and it is zero if r = 3M . This means that
the integral curves of V for r = 3M are geodesics : there are some �photon trajectories�
orbiting the black hole at r = 3M . This is a very strong e�ect of light bending which
requires a black hole or a very dense body of radius lower than three times its mass.

5.4 Maximal extension

After having adopted, in the previous section, the point of view of an observer static with
respect to in�nity, and thus limited our study to the exterior of the black hole foliated
using Schwarzschild's time coordinate, we describe here brie�y the global geometry of
Schwarzschild's space-time. We de�ne the Eddington-Finkelstein and the Kruskal-Szekeres
coordinates inside and outside the black hole. These will allow us to show that the horizon
is not a singularity of the metric. The maximal analytic extension of Schwarzschild's space-
time will then appear naturally. Most of the material of this section is standard, it can be
found under various forms in [5], [11] and [17] for example.
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5.4.1 Eddington-Finkelstein coordinates

There are two types of Eddington-Finkelstein coordinates respectively referred to as ad-
vanced and retarded, or, more to the point, incoming and outgoing. They are based on
the incoming (resp. outgoing) radial null geodesics.

The incoming Eddington-Finkelstein coordinates are

v = t+ r∗, r, θ, ϕ ,

where r∗ = r + 2M log(r − 2M) is the Regge-Wheeler coordinate. The Schwarzschild
metric, in these coordinates, reads

g =
(

1− 2M
r

)
dv2 − 2dvdr − r2dω2 . (5.7)

This is �ne outside the black hole but not inside where the expression of r∗ is no longer
valid. If we de�ne r∗ inside the black hole as

r∗ = r + 2M log(2M − r) , (5.8)

r∗ varies from −∞ to 2M log(2M) as r varies from 2M to 0. We keep the de�nition
v = t + r∗ inside the black hole and we obtain the same expression (5.7) of the metric g.
This is analytic on Rv×]0,+∞[r×S2

ω and does not degenerate anywhere (apart from the
usual problem due to spherical coordinates) as we can see from the determinent of g :

det g = −r4 sin2 θ .

The whole of Schwarzschild's spacetime is represented by the incoming Eddington-Finkel-
stein coordinates and we can wonder how to interpret the spacetime, and more particularly
the horizon, physically.

A v =constant curve is a curve

(t = −r∗ + v0, r∗, ω = ω0) ,

with v0 and ω0 �xed ; i.e. this is an integral curve of the vector �eld V − = ∂t − ∂r∗ , in
other words, a null geodesic. Outside the black hole, this is clearly the incoming radial
null geodesic γv0,ω0 . If we parametrize this curve by r, then it is an analytic curve in all
positive values of r, in particular we see that the incoming null geodesic γv0,ω0 outside the
black hole extends analytically inside the black hole as the same v = v0. As we follow
the geodesic from in�nity inwards, we move towards the future and r decreases (with r∗
decreasing from +∞ to −∞ as r decreases from +∞ to 2M), the geodesic then crosses
the horizon {r = 2M} and keeps going towards the singularity at the origin (r∗ increasing
from −∞ to 2M log(2M) as r decreases from 2M to 0). The interior of the black hole is
thus understood as lying in the future of the exterior. The correct time orientation of the
interior of the black hole, consistent with that given by ∂t outside the black hole, would
appear to be given by −∂r.

The horizon is seen as the hypersurface Rv × {2M}r × S2
ω and separates the exterior

from the interior. Moreover, the horizon appears as a null hypersurface. Indeed, the metric
does not degenerate there, but its restriction to the horizon is the 2-metric

−(2M)2dω2 ,
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whereas the horizon is a 3-surface. This means that one of the tangent vectors to the
horizon is null. At each point of the hypersurface {r = 2M}, the space of tangent vectors
is spanned by ∂v, ∂θ and ∂ϕ. The �squared norm� of ∂v for the metric g is given by

g

(
∂

∂v
,
∂

∂v

)
=
(

1− 2M
r

)
.

So ∂v is null for r = 2M . The correct picture of Schwarzschild's spacetime in incoming
Eddington-Finkelstein coordinates is given by (FIGURE IncomEF) and we see that once
inside the black hole, we cannot come back out of it.

We now perform a similar construction based on the outgoing Eddington-Finkelstein
coordinates :

u = t− r∗, r, θ, ϕ ,

and the Schwarzschild metric in these coordinates takes the expression

g =
(

1− 2M
r

)
du2 + 2dudr − r2dω2 . (5.9)

Similarly to the incoming case, this is analytic on Ru×]0,+∞[r×S2
ω and does not degen-

erate anywhere. The whole of Schwarzschild's spacetime is again represented, but the
physical picture is di�erent. Following an outgoing radial null geodesic (a u =constant
line) towards the future, we emerge from the singularity at r = 0, cross the interior of the
�black hole�, the horizon, emerge from the �black hole� and go towards in�nity. The black
hole does not appear to be so black in this case since light rays emerge from it. The horizon
is again a null hypersurface but this time it cannot be crossed from the exterior to the
interior. This is a very di�erent description of Schwarzschild's spacetime corresponding
not to a black hole, but to a white hole (see �gure OutgoEF). The time orientation of
the interior consistent with the one given by ∂t outside the black hole would now seem to
correspond to ∂r.

What we have constructed using the incoming and the outgoing Eddington-Finkelstein
coordinates are similar objects but with the opposite time orientation. We shall see in the
next section that the two descriptions are both present in the most complete picture of
Schwarzschild's spacetime : the maximal analytic extension of it, also know as the Kruskal
manifold.

5.4.2 Kruskal-Szekeres coordinates

Outside the black hole, Kruskal Szekeres coordinates (T,X, ω), ω denoting the angular
variables of the Schwarzschild coordinate system, are de�ned by

T =
1
2
e

r∗
4M

(
e

t
4M − e−

t
4M

)
, X =

1
2
e

r∗
4M

(
e

t
4M + e−

t
4M

)
, (5.10)

where r∗ is the Regge-Wheeler variable outside the black hole given by (5.2)

r∗ = r + 2MLog(r − 2M) .

This coordinate system maps the exterior of the black hole Rt×]2M,+∞[r×S2
ω onto the

quadrant {X > |T |} of RT × RX × S2
ω. The horizon now appears as the hypersurface
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{(T,X, ω) ; T = X > 0 , ω ∈ S2}. The outgoing (resp. incoming) radial null geodesics,
represented in (t, r∗, ω) coordinates as the straight lines {(t, r∗ = t + s, ω) ; t ∈ R} (resp.
{(t, r∗ = −t+ s, ω) ; t ∈ R}) for �xed s ∈ R and ω ∈ S2, are described in Kruskal-Szekeres
coordinates as the straight lines {(T,X = T + S, ω)} (resp. {(T,X = −T + S, ω)}) for
�xed S and ω.

Inside the black hole, the de�nition is very similar. We consider the Regge-Wheeler
coordinate adapted to this domain (given by (5.8))

r∗ = r + 2MLog|r − 2M | = r + 2MLog(2M − r) ,

the expression of the variables T and X in terms of t and r∗ is then given by

T =
1
2
e

r∗
4M

(
e−

t
4M + e

t
4M

)
, X =

1
2
e

r∗
4M

(
e−

t
4M − e

t
4M

)
. (5.11)

The interior of the black hole Rt×]0, 2M [r×S2
ω is mapped onto the domain {(T,X, ω) ∈

R × R × S2 ; |X| < T <
√
X2 + 2M} and the singularity at r = 0 is represented as the

product of S2
ω with the hyperbola in the (T,X)-plane : {(T,X) ; T 2−X2 = 2M , T > 0}.

The expression of the metric in Kruskal-Szekeres coordinates is the same inside and
outside the black hole

g =
16M2

X2 − T 2

(
1− 2M

r

)(
dT 2 − dX2

)
− r2dω2 .

This can be simpli�ed using the fact that

X2 − T 2 = (r − 2M)e
r

2M (5.12)

and we obtain

g =
16M2

r
e−

r
2M
(
dT 2 − dX2

)
− r2dω2 (5.13)

where r is determined implicitely in terms of T and X by (5.12). The function (r−2M)e
r

2M

is analytic in r and strictly increasing from ]0,+∞[ onto ] − 2M,+∞[. It follows that r
is an analytic function of X2 − T 2, and therefore of (T,X), on −2M < X2 − T 2 < +∞.
An immediate consequence is the analyticity of the metric g on the whole Schwarzschild
manifold, described in (T,X, ω) coordinates as {(T,X, ω) ∈ R×R×S2 ; T +X > 0 , T <√
X2 + 2M} (the singularity at r = 0 is not considered as a subset of the Schwarzschild

manifold).
This construction is another way of showing that the metric g is not singular at the

horizon of the black hole ; the expression (5.13) of g and the description of the horizon in
(T,X, ω) coordinates reveal it to be a smooth null hypersurface of Schwarzschild's space-
time. This can be seen as an alternative to the construction we performed earlier with
the incoming Eddington-Finkelstein coordinates. This has an advantage over the previous
construction however, it can now be extended into the �maximal Schwarzschild spacetime�.

5.4.3 Maximal Schwarzschild space-time

As we have seen above, the metric (5.13) can be extended analytically on the region

MK =
{
(T,X, ω) ∈ R× R× S2

ω ; X2 − T 2 > −2M
}
.
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We obtain a new space-time (MK, g) called the Kruskal extension, or maximal analytic
extension, of Schwarzschild's space-time. It contains four blocks separated by a bifurcate
horizon {|T | = |X|} (see �gure 5.2) :

I :=
{
(T,X, ω) , X > |T | , ω ∈ S2

}
,

II :=
{

(T,X, ω) , |X| < T <
√

2M +X2 , ω ∈ S2
}
,

III :=
{
(T,X, ω) , X < −|T | , ω ∈ S2

}
,

IV :=
{

(T,X, ω) , − |X| > T > −
√

2M +X2 , ω ∈ S2
}
.

Blocks I and III are exteriors (corresponding to r > 2M) and the blocks II and IV are
interiors (corresponding to 0 < r < 2M). The realization of the Schwarzschild manifold
that we constructed using the incoming (resp. outgoing) Eddington-Finkelstein coordinates
is the union of blocks I and II (resp. I and IV) with the part of the horizon between them.

The union of blocks III and IV with the part of the horizon between them is also a
realization of the Schwarzschild manifold ; it is isometric to the union of blocks I and II
with the adequate part of the horizon with the time orientation reversed. More explicitely,
blocks III and IV are the image of the Schwarzschild space-time, described in Schwarzschild
coordinates, by the transformations (5.10) and (5.11) with the signs of T and X reversed.

The space-time (MK, g) is best pictured by a Penrose diagram, which can be con-
structed by de�ning the new coordinates (which are not smooth and only of practical use
to get a picture of the general structure of MK, not for any calculation) :

α = arctan
(
T +X√

2M

)
− arctan

(
T −X√

2M

)
,

β = arctan
(
T +X√

2M

)
+ arctan

(
T −X√

2M

)
.

This diagram will make more sense very soon after we have constructed the complete
boundary (except for a few �points�). This will be done in chapter 8. Note that (MK, g)
is globally hyperbolic, the hypersurface {τ = 0} is a Cauchy hypersurface.
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Figure 5.2: The maximal analytic extension of Schwarzschild's space-time in Kruskal-
Szekeres coordinates : domains I and III correspond to r > 2M , domain II represents the
interior of the black hole and domain IV the interior of the white hole.

Figure 5.3: The Penrose diagram of maximal Schwarzschild space-time
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5.5 exercices

Exercice 5.1. Domain of dependence

Let us consider for 2M < r1 < r2 < +∞, −∞ < t1 < t2 < +∞, 0 < r0 < 2M , the
domains de�ned in Schwarzschild coordinates by :

D1 := {(t, r, θ, ϕ) , r1 < r < r2 , t = 0} ,
D2 := {(t, r, θ, ϕ) , r = r0 , t1 < t < t2} .

1. Determine the domain of dependence of D1 in the exterior of the back hole.

2. Determine the domain of dependence of D1 in the maximal extension of Schwarzschild's
spacetime.

3. Determine the domain of dependence of D2 in the interior of the black hole.

Exercice 5.2. Global hyperbolicity

1. Find a Cauchy hypersurface in the exterior of the black hole.

2. Find a Cauchy hypersurface in the interior of the black hole.

3. Find a Cauchy hypersurface in the maximal extension of Schwarzschild's spacetime.

Exercice 5.3. Chute vers le trou noir

1. Trouver toutes les géodésiques radiales à l'extérieur d'un trou noir de Schwarzschild.

2. Donner une illustration graphique du fait qu'un objet tombant directement vers le
trou noir apparaît à un observateur lointain comme s'applatissant indé�niment à
l'horizon.



Chapter 6

Other spherically symmetric black

holes

The Schwarzschild metric has two extensions that still retain the feature of spherical sym-
metry :

• the Reissner-Nordstrøm metric describes a charged spherical static black hole ; it is
no longer a solution of the Einstein vacuum equations but of the Einstein-Maxwell
system, i.e. the Einstein equations with the stress-energy tensor of an electromagnetic
�eld as a source, coupled to the Maxwell system ;

• the De Sitter-Schwarzschild metric describes a spherical eternal uncharged black hole
in a universe with a positive cosmological constant.

In fact the two extensions are part of the De Sitter-Reissner-Nordstrøm family. This is
the two-parameter family of metrics describing a spherical, charged, eternal black hole in
a universe with a non negative cosmological constant. It is de�ned on Rt×]0,+∞[r×S2

ω by

g = F (r)dt2 − F (r)−1dr2 − r2dω2 , F (r) = 1− 2M
r

+
Q2

r2
− Λr2 , (6.1)

where M > 0 is the mass of the black hole, Q its charge and Λ > 0 the cosmological
constant. In the case where Λ = 0, g is the Reissner-Nordstrøm metric and when Q = 0,
g is the De Sitter-Schwarzschild metric. When M = Q = 0 and Λ > 0, the geometry we
obtain is known as De Sitter spacetime.

6.1 Reissner-Nordstrøm metrics

We consider the metric given by (6.1) with Λ = 0, i.e. with

F (r) = 1− 2M
r

+
Q2

r2
.

Similarly to the case of the Schwarzschild metric, {r = 0} is a curvature singularity and
the zeros of the function F are the radii of the horizons, which are �ctitious singularities
that can be understood as smooth null hypersurfaces by means of Kruskal-Szekeres-type
coordinates ; except now we may have two horizons. There are three types of Reissner-
Nordstrøm metrics, depending on the respective importance of M and Q.

67
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1. For M > |Q|, the function F has two roots

r± := M ±
√
M2 −Q2 , (6.2)

so the space-time has two horizons. The horizon {r = r+} will be called the outside
horizon, or horizon of the black hole, while {r = r−} will be called the inner horizon.

2. For M = |Q|, r+ = r− = M is the only root of F and there is only one horizon. The
corresponding black hole is referred to as an extreme Reissner-Nordstrøm black hole.

3. For M < |Q|, the function F has no real root. There are no horizons in this case,
the space-time contains no black hole and the singularity {r = 0} is naked (i.e. not
hidden beyond a horizon).

6.1.1 Sub-extremal case : M > |Q|

The two horizons decompose the Reissner-Nordstrøm manifold into three regions called
blocks.

• Block I is the exterior of the black hole {r > r+}. It is a static and globally hyperbolic
region : the Killing vector ∂t is timelike and orthogonal to the Cauchy hypersurfaces
{t}×]r+,+∞[r×S2

ω.

• Block II is the region between the two horizons {r− < r < r+} : it is a dynamic region
where ∂r is timelike and ∂t is spacelike, as inside a Schwarzschild black hole. It is
also globally hyperbolic.

• Block III is the region beyond the inner horizon {r < r−}. It is another static region
where ∂t is Killing and timelike and orthogonal to the level hypersurfaces of t that
are spacelike. But block III is not globally hyperbolic because of the singularity at
r = 0. If we take any smooth connected spacelike hypersurface Σ in block III, there
are inextendible timelike geodesics ending in the singularity and not meeting Σ. The
singularity is timelike since the vector �eld ∂t is timelike in block III.

The spacelike geometry of block I is similar to the Schwarzschild case in that the outer
horizon is at �nite spacelike distance from any point outside the black hole. This is a
straightforward consequence of the fact that for any r0 > r+, the integral∫ r0

r+

1√
F (r)

dr =
∫ r0

r+

r√
(r − r+)(r − r−)

dr <∞ .

Similarly, in block III, the inner horizon is at �nite spacelike distance from any point in
block III. And so is the singularity from any point in block III.

We can de�ne a Regge-Wheeler-type coordinate r∗ in each of the three blocks easily.
It needs to satisfy

dr∗
dr

=
1

F (r)
=

r2

(r − r+)(r − r−)
= 1 +

r2+
r+ − r−

1
r − r+

+
r2−

r− − r+

1
r − r−

,

i.e.

r∗ = r +
r2+

r+ − r−
log |r − r+|+

r2−
r− − r+

log |r − r−|+R0
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Figure 6.1: A �rst extension of the sub-extremal Reissner-Nordtrøm space-time drawn as
a Carter-Penrose diagram. The dotted lines represent the r =cont. hypersurfaces. The
thick continuous curved line is the singularity r = 0. The shaded regions are not part of
the spacetime.

where R0 is an arbitrary constant. In each block, the metric is expressed in terms of the
variables (t, r∗, ω) as

g = F (r)
(
dt2 − dr2∗

)
− r2dω2 .

This allows to construct Eddington-Finkelstein-type coordinates in each block u = t − r∗
and v = t+ r∗. The corresponding expressions of the metric will be

g = F (r)du2 + 2dudr − r2dω2

= F (r)dv2 − 2dvdr − r2dω2 .

We can then glue blocks together as we did in the Schwarzschild case :

• using the incoming coordinates (v, r, ω), we glue block II to the future of block I via a
future outer horizon and block III to the future of block II via a future inner horizon ;

• using the incoming coordinates (u, r, ω), we glue block II to the past of block I via a
past outer horizon and block III to the past of block II via a past inner horizon.

We obtain a �rst extension of the Reissner-Nordstrøm manifold shown in �gure 6.1. We
notice that some radial null geodesics are incomplete in this picture and therefore the
extension is not maximal. We can then construct the maximal analytic extention of the sub-
extremal Reissner-Nordstrøm black hole by extending the incomplete radial null geodesics :
the additional blocks to be glued are found by smoothness of the function r over the whole
extension and by observations of time orientation. In total 6 types of blocks will be used
in the construction of the maximal analytic extension : I, II, III (II here is understood as
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Figure 6.2: The Carter-Penrose diagram of the maximal analytic extension of the sub-
extremal Reissner-Nordtrøm space-time.

having the time orientation given by −∂r) and the same blocks with their time orientation
reversed I', II' and III'.

The Carter-Penrose diagram of the maximal analytic extension of the sub-extremal
Reissner-Nordtrøm spacetime is shown in �gure 6.2.

6.1.2 Extreme case : M = |Q|

Block II no longer exists in this case and only blocks I and III remain. The Regge-Wheeler
coordinate r∗ is now given as a primitive of the function

1
F (r)

=
r2

(r −M)2
= 1 +

2M
r −M

+
M2

(r −M)2
,

i.e.

r∗ = r + 2M log |r −M | − M2

r −M
.

This has a very di�erent behaviour at the horizon from the sub-extremal case.
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Figure 6.3: The Carter-Penrose diagram of the maximal analytic extension of the extreme
Reissner-Nordtrøm space-time.

A similar di�erence appears in the spacelike geometry of extreme Reissner-Nordstrøm
black holes. We note that

∫ r0

M

1√
F (r)

dr =
∫ r0

M

r√
(r −M)2

dr = ∞ .

The horizon is at in�nite spacelike distance from any point in block I and from any point
in block III (the singularity remains of course at �nite spacelike distance from points in
block III).

This seems to indicate that the maximal analytic extension of an extreme Reissner-
Nordstrøm black hole should be more puzzling than in the sub-extremal case. The Carter-
Penrose diagram of the maximal analytic extension of the extremal Reissner-Nordtrøm
spacetime is shown in �gure 6.3. The structure is not so surprising, but the �spacelike
horizon�, i.e. r = M for �nite values of t is not a part of the spacetime.

6.1.3 Super-extremal case : M < |Q|

There is only one block with a singularity at r = 0. The spacetime is not extendible.
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6.2 De Sitter-Schwarzschild metrics

We now study the metric (6.1) withQ = 0 and Λ > 0. The function F (r) has the expression

F (r) = 1− 2M
r

− Λr2 = −Λr3 − r + 2M
r

.

The derivative 1 − 3Λr2 of the numerator only vanishes on ]0,+∞[ for r = 1/
√

3Λ ; it
is positive in ]0, 1/

√
3Λ[ and negative for r > 1/

√
3Λ. The value of the numerator at

r = 1/
√

3Λ is
1√
3Λ

− 1
3
√

3Λ
− 2M = 2

(
1√
27Λ

−M

)
.

So there are three distinct situations.

• 27ΛM2 < 1 : the function F has two zeros 0 < r− < r+ < +∞, there are two
horizons and three blocks ; since F is positive between r− and r+, block II (the
domain between the horizons) is static with ∂t Killing, timelike and orthogonal to
the Cauchy hypersurfaces of constant t. Block I (r ∈]0, r−[) is dynamic, it is the
inside of the black hole or of the white hole. Block III (r ∈]r+,+∞[) is also dynamic,
either in expansion or in contraction. The horizon r = r+ is called the cosmological
horizon. The singularity at r = 0 is spacelike as in the Schwarzschild case.

• 27ΛM2 = 1 : the function F has only one double zero at r = 1/
√

3Λ = 3M and F
is negative on either side. Block II vanishes and we only have blocks I and III. The
singularity at r = 0 is spacelike.

• 27ΛM2 > 1 : F has no zero and is negative everywhere, there is a naked singularity
in a dynamic universe. The singularity at r = 0 is spacelike.

We give in �gures 6.4, 6.5 and 6.6 the Carter-Penrose diagrams of the De Sitter-Schwarzschild
space-time in the cases 27ΛM2 < 1, 27ΛM2 = 1 and 27ΛM2 > 1.
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Figure 6.4: Carter-Penrose diagram of De Sitter-Schwarzschild spacetime in the case
27ΛM2 < 1.

Figure 6.5: Carter-Penrose diagram of De Sitter-Schwarzschild spacetime in the case
27ΛM2 = 1.

Figure 6.6: Carter-Penrose diagram of De Sitter-Schwarzschild spacetime in the case
27ΛM2 > 1.
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Chapter 7

The Kerr metric

The Kerr metric is another extension of the Schwarzschild metric : it is no longer spherically
symmetric. The additional parameter is the angular momentum per unit mass. It is a
solution of the Einstein vacuum equations that describes a rotating uncharged black hole ;
in Boyer-Lindquist coordinates on Rt × Rr × S2

ω, it takes the form

gµνdxµdxν =
(

1− 2Mr

ρ2

)
dt2 +

2a sin2 θ
(
r2 + a2 −∆

)
ρ2

dtdϕ− ρ2

∆
dr2

−ρ2dθ2 −

((
r2 + a2

)
ρ2 + 2Mra2 sin2 θ

ρ2

)
sin2 θ dϕ2, (7.1)

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2,

where a is the angular momentum per unit mass and M > 0 is the mass of the black hole.
The black hole rotates around the axis going through its North and South poles. This
results into a non-zero coe�cient gtϕ that couples the variables t and ϕ. The function ∆ is
the analogue of r2(1− 2M/r) in Schwarzschild's space-time ; it de�nes the horizons as the
sets of points where ∆ = 0. These horizons appear as singularities in the expression (7.1)
above, but they are merely coordinate singularities, the metric can be extended smoothly
through them. The only true curvature singularity of the metric is the equatorial ring
de�ned by ρ2 = 0, i.e. r = 0 and θ = π/2. There are three types of Kerr space-times
depending on the respective importance of the rotation and the mass :

• Slow Kerr space-time for 0 < |a| < M (the case a = 0 reduces to the Schwarzschild
metric). ∆ has two real roots r− and r+ :

0 < r− = M −
√
M2 − a2 < M < r+ = M +

√
M2 − a2 < 2M, (7.2)

so there are two horizons on either side of the sphere {r = M}.

• Extreme Kerr space-time for |a| = M . M is then a double root for ∆ and the sphere
{r = M} is the only horizon.

• Fast Kerr space-time for |a| > M . ∆ has no real root and the space-time has no horizon.
There is no black hole in this case, the ring singularity is a naked singularity.
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We consider only the case of slow Kerr metrics. Horizons separate the space-time in
connected regions called Boyer-Lindquist blocks :

Block I is the exterior of the black hole {r > r+}. It is the simplest of all three blocks.
In this region, the vectors ∂/∂r, ∂/∂θ, ∂/∂ϕ are spacelike and, for r >> 1, ∂/∂t is
timelike. However, block I contains a region called the ergosphere in which gtt < 0
and thus ∂/∂t is spacelike. The ergosphere is the toroïdal domain around the outside
horizon :

E =
{

(t, r, θ, ϕ) ; r+ < r < M +
√
M2 − a2 cos2 θ

}
.

Inside E , the e�ects of the rotation are extreme and along every future-oriented non
spacelike curve, the quantity aϕ is strictly increasing.

Block I, like any Boyer-Lindquist block, is not stationary, i.e. there is no timelike
Killing vector �eld globally de�ned on it. However, the exterior of the ergosphere is
stationary, and even absolutely stationary, since ∂/∂t is the unique (up to multipli-
cation by a constant) timelike Killing vector �eld globally de�ned there. Also, every
point in block I, even inside the ergosphere, has a stationary neighbourhood.

Block II is the region between the outer and inner horizons {r− < r < r+} ; it only
exists in the slow case. ∂/∂r is timelike there and ∂/∂t, ∂/∂θ, ∂/∂ϕ are spacelike. It
is a dynamic domain where the inertial frames are dragged towards the inner horizon
(the time orientation implicit in this description is such that ∂/∂r is past pointing).

Block III lies beyond the inner horizon {−∞ < r < r−}. It contains another ergosphere

E ′ =
{

(t, r, θ, ϕ) ; M −
√
M2 − a2 cos2 θ < r < r−

}
,

the ring singularity and a time machine (being the only region where ∂/∂ϕ is timelike)
which allows any two points in block III to be joined by a future-oriented timelike
curve. Hence, not only is block III not stationary, it is not causal either.

For a detailed description of the geometry of Kerr black holes, see [19].

7.1 The exterior of the black hole

In this section, we study block I from the point of view of an observer who is static with
respect to in�nity. The perception of such observers is limited to block I and is described
by the time function t of the Boyer-Lindquist coordinates. Just as in the Schwarzschild
case, light rays in block I can only reach the horizon when t becomes in�nite. To illustrate
this property, we consider the principal null geodesics which play a role similar to the radial
null geodesics on the Schwarzschild space-time. They are de�ned by

ṙ = ±1, θ̇ = 0 , ϕ̇ =
a

∆
, ṫ =

r2 + a2

∆
.

Introducing a new coordinate r∗ such that

dr∗
dr

=
r2 + a2

∆
> 0 on ]r+,+∞[
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we get
ṙ∗ = ±ṫ

and therefore, along a principal null geodesic we must have

t = ±r∗ + C .

The horizon r = r+ corresponds to r∗ → −∞ and is consequently reached only when t
becomes in�nite.

We study the geometry of {t = constant} slices ; their extrinsic geometry is non trivial
and even singular at the horizon.

We denote by M the space-time outside the black hole and we choose the foliation of
M by the level hypersurfaces of the time-function t :

Σt = {t}×]r+,+∞[r×S2
θ,ϕ . (7.3)

For each t, the hypersurface Σt is spacelike since at each point, its tangent plane is spanned
by the three spacelike vectors ∂

∂r ,
∂
∂θ ,

∂
∂ϕ . This shows that t is indeed a time function, i.e.

its gradient ∇at is a timelike vector �eld, in spite of the fact that in Boyer-Lindquist
coordinates, ∂

∂t is not everywhere timelike in block I. The time orientation is �xed by

deciding that ∇at is future pointing, which is equivalent to saying that ∂
∂t is future pointing

in the region of block I where it is timelike.

7.1.1 The 3 + 1 decomposition of the Kerr metric in block I

We perform the 3 + 1 decomposition of the metric g relative to the foliation {Σt}t∈R. We
calculate the expression of the vector

T a =
∇at

|∇t|

in Boyer-Lindquist coordinates. To do this, we look for a future pointing timelike vector
�eld Ua orthogonal to Σt at each point and we normalize it to obtain T a (we could also
calculate the inverse metric and apply it to dt). The time orientation yields that t increases
along all timelike future pointing curves, hence we choose Ua of the form

Ua∂a =
∂

∂t
+A

∂

∂r
+B

∂

∂θ
+ C

∂

∂ϕ

and imposing that Ua should be everywhere g-orthogonal to ∂
∂r ,

∂
∂θ and ∂

∂ϕ , we obtain

Ua∂a =
∂

∂t
− gtϕ

gϕϕ

∂

∂ϕ
=

∂

∂t
+

2aMr

(r2 + a2) ρ2 + 2Mra2 sin2 θ

∂

∂ϕ
. (7.4)

We put

α(r, θ) = − gtϕ

gϕϕ
=

2aMr

(r2 + a2) ρ2 + 2Mra2 sin2 θ
. (7.5)

The norm of Ua is then given by

|U |2 = UaU
a = gtt −

(gtϕ)2

gϕϕ
=
−∆ sin2 θ

gϕϕ
=

∆ρ2

(r2 + a2) ρ2 + 2Mra2 sin2 θ
> 0 in block I ,
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and the vector T a is

T a =
Ua

|U |
.

If we introduce the vector �elds ra, θa, ϕa de�ned as

ra∂a = |grr|−1/2 ∂

∂r
, θa∂a = |gθθ|−1/2 ∂

∂θ
, ϕa∂a = |gϕϕ|−1/2 ∂

∂ϕ
,

then {T a, ra, θa, ϕa} is a local orthonormal Lorentz frame in block I ; the metric can
therefore be written as

gab = TaTb − hab , hab = rarb + θaθb + ϕaϕb

and the 1-forms Ta, ra, θa and ϕa are given by

Tadxa = |U |dt =

√
gtt −

(gtϕ)2

gϕϕ
dt , radxa = −|grr|1/2dr , θadxa = −|gθθ|1/2dθ ,

ϕadxa = |gϕϕ|−1/2 (gtϕdt+ gϕϕdϕ) = −|gϕϕ|1/2 (dϕ− α dt) .

This gives the expression of the lapse function

N = |U | =
(
gtt −

(gtϕ)2

gϕϕ

)1/2

=
(

∆ρ2

(r2 + a2) ρ2 + 2Mra2 sin2 θ

)1/2

.

In Boyer-Lindquist coordinates, the product structure is associated to the Killing vector
�eld ∂

∂t . If we wish our decomposition of the metric to be useful, we must interpret hab as
a (time dependent) metric on

Σ :=]r+,+∞[r×S2
θ,ϕ .

This requires to choose the product structure associated with T a. An explicit way of doing
this is to de�ne the new coordinates τ , R, Θ, Φ :

τ = t , R = r , Θ = θ , Φ = ϕ− (t− t0)α(r, θ) (mod 2π)

for a given t0 ∈ R. We obtain the following expression of g :

g(τ) = N2dτ2 − h(τ)

=
(
gtt −

(gtϕ)2

gϕϕ

)
dτ2 + grrdR2 + gθθdΘ2 + gϕϕ

(
dΦ + (τ − t0)

∂α

∂R
dR+ (τ − t0)

∂α

∂Θ
dΘ
)2

=
(
gtt −

(gtϕ)2

gϕϕ

)
dτ2 +

(
grr + (τ − t0)2

(
∂α

∂R

)2

gϕϕ

)
dR2

+

(
gθθ + (τ − t0)2

(
∂α

∂Θ

)2

gϕϕ

)
dΘ2 + gϕϕdΦ2

+2(τ − t0)2
∂α

∂R

∂α

∂Θ
gϕϕdRdΘ + 2(τ − t0)

∂α

∂R
gϕϕdRdΦ + 2(τ − t0)

∂α

∂Θ
gϕϕdΘdΦ . (7.6)
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Note that for these new variables, we have

∂

∂τ
= Ua∂a ,

∂

∂R
=

∂

∂r
,
∂

∂Θ
=

∂

∂θ
,
∂

∂Φ
=

∂

∂ϕ
,

T a∂a =
√

2
|U |

∂

∂τ
=

2
N

∂

∂τ
.

Remark 7.1. The quantity α is the local rotation speed of the spacetime. We see that the
function α has no singularity at r+ (in fact it is only singular at the boundary of the time
machine). And for r = r+ the function α no longer depends on θ, indeed

α(r+, θ) =
2aMr+

(r2+ + a2)(r2+ + a2 cos2 θ) + 2Mr+a2 sin2 θ

=
2aMr+

(2Mr+)(r2+ + a2 cos2 θ + a2 sin2 θ)
since r2+ + a2 = 2Mr+ ,

=
a

r2+ + a2
.

The rotation speed of the outer horizon is the same everywhere on the horizon, it does not
depend on the latitude. The same is true of the inner horizon with r+ replaced by r−.

7.1.2 The intrinsic and extrinsic geometry of the slices

All slices Στ , τ ∈ R have the same geometry (both intrinsic and extrinsic) since in Boyer-
Lindquist coordinates, the metric g is independent of t ( ∂

∂t is a Killing vector �eld). We
consider a generic slice (Σ, h(τ0)) and we choose t0 = τ0 in order to simplify the expression
of h(τ0) :

h(τ0) = −grrdR2 − gθθdΘ2 − gϕϕdΦ2

=
ρ2

∆
dR2 + ρ2dΘ2 +

[
(R2 + a2)ρ2 + 2MRa2 sin2 Θ

ρ2

]
sin2 ΘdΦ2,

ρ2 = R2 + a2 cos2 Θ , ∆ = R2 − 2MR+ a2 .

The coe�cient ρ2/∆ is singular at the horizon H = {r+}R × S2
Θ,Φ ; we introduce a new

radial coordinate to show that the metric h(τ0) can be extended smoothly through H.
Putting

F (R) :=
∆
R2

= 1− 2M
R

+
a2

R2
=

(R− r+)(R− r−)
R2

,

we de�ne u(R) for R ∈ [r+,+∞[ by

u(R) :=
∫ R

r+

F−1/2(s)ds .

(Note that for extreme Kerr space-time, we would have r+ = r− = M and consequently,
the integral de�ning u(R) would diverge. Hence, the h-distance to the horizon would be
everywhere in�nite in block I.) The function u of R is continuous strictly increasing from
[r+,+∞[ onto [0,+∞[, it is C∞ on ]r+,+∞[ but is not di�erentiable at r+. As in the
Schwarzschild case, we easily show the following result ; the proof is identical to that of
lemma 5.1 and we do not repeat it here :
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Lemma 7.1. The inverse function u 7−→ R(u) is smooth from [0,+∞[ onto [r+,+∞[ and
all its derivatives are uniformly bounded on [0,+∞[.

Lemma 7.1 will allow us to prove that each slice is a smooth manifold with boundary
H and that the lapse function is smooth on Σ̄. The following corollary expresses these
properties as well as the fact that h(τ) depends regularly on τ :

Corollary 7.1. The manifold (
Σ̄ = [0,+∞[u×S2

Θ,Φ, h(τ0)
)

is a smooth manifold with boundary. The lapse function N , which is independent of τ , is
regular and uniformly bounded on Σ̄ as well as all its derivatives. Moreover, the metric
h(τ) is a smooth function of τ ; to be more explicit, we have

hab ∈ C∞
(
Rτ ; C∞b

(
Σ̄ ;TabM

))
, hab ∈ C∞

(
Rτ ; C∞b

(
Σ̄ ;T abM

))
.

Remark 7.2. The extrinsic curvature

Kab = −LT (hab)

is singular at the horizon, however,

NKab ∈ C∞
(
Rτ ; C∞b

(
Σ̄ ;TabM

))
.

Proof of corollary 7.1 : We write the metric h(τ0) in the form

h(τ0) =
ρ2

R2
du2+

ρ2

(1 + u)2
(1+u)2dΘ2+

[
(R2 + a2)ρ2 + 2MRa2 sin2 Θ

ρ2(1 + u)2

]
(1+u)2 sin2 ΘdΦ2.

The functions
ρ2

R2
,

ρ2

(1 + u)2
,

(R2 + a2)ρ2 + 2MRa2 sin2 Θ
ρ2(1 + u)2

are smooth on Σ̄, positive, uniformly bounded as well as all their derivatives and uniformly
bounded away from zero. Hence, h(τ0) is a smooth, symmetric, positive de�nite 2-form
on Σ̄, uniformly controlled below and above by the euclidian metric on Σ̄ considered as
R3 rB(0, 1) :

du2 + (1 + u)2dΘ2 + (1 + u)2 sin2 ΘdΦ2.

This shows in particular that (Σ̄, h(τ0)) is a smooth Riemannian manifold with boundary
H. Given a regular coordinate system on Σ̄, say the underlying euclidian coordinates on
R3 rB(0, 1), the 3×3 matrices hij and h

ij , representing the metric h(τ0) and its inverse in
this coordinate basis, are smooth and bounded on Σ̄ as well as all their derivatives. This
is expressed more intrinsically by

hab(τ0) ∈ C∞b
(
Σ̄ ;TabM

)
, hab(τ0) ∈ C∞b

(
Σ̄ ;T abM

)
.

The lapse function N is given by

N(R,Θ) =
(

2R2ρ2

(R2 + a2) ρ2 + 2MRa2 sin2 Θ

)1/2

F 1/2.
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It is the result of the multiplication of F 1/2 by a smooth function on Σ̄, uniformly bounded
as well as all its derivatives and uniformly bounded away from zero. Therefore, as a trivial
consequence of lemma 7.1 and dR

du = F 1/2, we have

N ∈ C∞b (Σ̄) .

We now study the regularity of h(τ) with respect to τ . Let us consider the expressions of
h(τ) and h(τ0) in the coordinate system R, Θ, Φ with t0 = τ0 :

h(τ) = −grrdR2 − gθθdΘ2 − gϕϕ

(
dΦ + (τ − τ0)

∂α

∂R
dR+ (τ − τ0)

∂α

∂Θ
dΘ
)2

,

h(τ0) = −grrdR2 − gθθdΘ2 − gϕϕdΦ2.

Putting
Φ̃ = Φ + (τ − τ0)α(R,Θ) (mod 2π) ,

we have
h(τ) = −grrdR2 − gθθdΘ2 − gϕϕdΦ̃2.

h(τ) is obtained from h(τ0) by a rotation around the axis of the black hole whose angle
(depending on τ , R and Θ) is

(τ − τ0)α(R,Θ) = −(τ − τ0)
gtϕ(R,Θ)
gϕϕ(R,Θ)

.

The function α(R,Θ) is smooth on Σ̄ and bounded as well as all its derivatives. Denoting
by G(τ − τ0) the C∞-di�eomorphism of Σ̄

G(τ − τ0) : (R,Θ,Φ) 7−→ (R,Θ,Φ + (τ − τ0)α(R,Θ)) ,

we have
hab(τ) = hab(τ0) ◦G(τ − τ0) , hab(τ) = hab(τ0) ◦G(τ − τ0) .

This entails

hab ∈ C∞
(
Rτ ; C∞b

(
Σ̄ ;TabM

))
, hab ∈ C∞

(
Rτ ; C∞b

(
Σ̄ ;T abM

))
and concludes the proof of corollary 7.1. 2

7.1.3 The Penrose process

If we consider a geodesic γ in block I, its energy as perceived by an observer static at
in�nity is

Eγ(s) := 〈γ̇(s) ∂t〉 .

It is conserved since ∂t is Killing, but since ∂t is spacelike inside the ergosphere, for a
timelike or null geodesic, the energy is allowed to be negative inside the ergosphere. This
has led Roger Penrose to imagine a situation where a particle extracts some energy from
the black hole : a particle is set towards the black hole ; its energy is of course positive ;
once inside the ergosphere, it disintegrates into a particle with negative energy and another
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with positive energy ; the one with negative energy cannot leave the ergosphere and we
assume that it falls into the black hole and that the other comes out of the ergosphere ;
by conservation of the total energy, the energy of the particle that comes back out of the
ergosphere is larger than the energy of the particle we sent towards the black hole. This is
called the Penrose process.

The Penrose process has been given Subramanian Chandrasekhar the idea of a city
built in orbit around a black hole and extracting its energy from the black hole. Shuttles
are sent inside the ergosphere loaded with the city's litter. Inside the ergosphere, they
eject the litter with an angular speed such that the energy of the litter bags is negative.
The shuttles then come back lighter than they left but with more energy. A wheel slowing
down the shuttles at their arrival back from the ergosphere then extracts the additional
energy.

How can we choose a timelike direction τa at a given point inside the ergosphere such
that g(τ, ∂t) < 0? Recall that for any spacelike vector at a given point, we can �nd two
future oriented timelike vectors such that their inner products with the spacelike vector
have opposite signs. In particular, this guarantees that there is a future timelike direction
τa (and by continuity an open set of future timelike directions) such that g(τ, ∂t) < 0.

Want to be more explicit? An easy way is to look for τ of the form

τ(λ) := ∂t + λ∂ϕ .

Then

g(τ, τ) = gtt + 2λgtϕ + λ2gϕϕ .

We have

g2
tϕ − gttgϕϕ = ∆ sin2 θ .

This is positive in block I and we have two values of λ for which g(τ, τ) = 0 :

λ± =
−gtϕ ±

√
g2
tϕ − gttgϕϕ

gϕϕ
.

Now if we calculate g(τ(λ±), ∂t), we get TO BE CONTINUED...

7.1.4 Superradiance

The phenomenon of superradiance is the analogue of the Penrose process at the level of
�elds. TO BE CONTINUED...

7.2 Maximal extension of Kerr's space-time

The global geometry of Kerr's space-time (and in particular slow Kerr) is far more complex
than that of Schwarzschild's space-time. An entire chapter of B. O'Neill's book [19] is
devoted to the construction of the maximal extension. Our purpose in this section is to
describe this construction schematically and to point out so-called Kruskal domains in
maximal slow Kerr space-time.
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7.2.1 Kerr-star and star-Kerr coordinates

Just as we did in the Schwarzschild case, we choose a coordinate system which will allow us
to represent globally the whole of Kerr's space-time. This choice is guided by the following
physical consideration : if a particle is to pass from block I to block II across the outer
horizon and then from block II to block III across the inner horizon, its most direct course
is to follow an incoming principal null geodesic. The whole idea of the Kerr-star coordinate
system is to turn incoming principal null geodesics into coordinate lines. Such geodesics
are de�ned on all three blocks in Boyer-Lindquist coordinates by

ṫ =
r2 + a2

∆
, ṙ = −1 , θ̇ = 0 , ϕ̇ =

a

∆
.

Keeping the coordinates r and θ, we introduce two new coordinates t∗ and ϕ∗ of the form

t∗ = t+ T (r) , ϕ∗ = ϕ+A(r)

where the functions T and A are required to satisfy

dT
dr

=
r2 + a2

∆
,

dA
dr

=
a

∆
.

(t∗, r, θ, ϕ∗) de�nes a coordinate system in each Boyer-Lindquist block1, called Kerr-star
coordinates, in which the incoming principal null geodesics are described by

ṙ = −1 , θ̇ = 0 , ṫ∗ = ṫ+
dT
dr

ṙ = 0 , ϕ̇∗ = ϕ̇+
dA
dr

ṙ = 0 ,

i.e. they are the r coordinate curves parametrized by s = −r (or −r+C). The expression
of the Kerr metric in Kerr-star coordinates is given by

g = gttdt∗
2 + 2gtϕdt∗dϕ∗ + gϕϕdϕ∗2 − ρ2dθ2 − 2dt∗dr + 2a sin2 θ dϕ∗dr , (7.7)

where gtt, gtϕ, gϕϕ and gθθ = −ρ2 are as de�ned in (7.1), i.e.

gtt =
(

1− 2Mr

ρ2

)
, gtϕ =

a sin2 θ
(
r2 + a2 −∆

)
ρ2

,

gϕϕ = −

((
r2 + a2

)
ρ2 + 2Mra2 sin2 θ

ρ2

)
sin2 θ , ρ2 = r2 + a2 cos2 θ .

We see from (7.7) that the metric g is smooth on all three blocks, with the exception of
the ring singularity {ρ2 = 0} = {r = 0 and θ = π/2} in block III, and across both horizons
(the component grr in Boyer-Lindquist coordinates was the only component of g to be
singular at the horizons and it does not appear in (7.7)).

Kerr-star space-time is de�ned as the manifold

M∗ = Rt∗ × Rr × S2
θ,ϕ∗ \

{
(t∗, r, θ, ϕ∗) ; r = 0 and θ =

π

2

}
1with the exception of the axis (θ = 0 and θ = π) ; this coordinate singularity can be dealt with simply

(see [19] lemma 2.2.2), we shall systematically ignore it.
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equipped with the smooth metric (7.7) and with the time orientation such that the null
coordinate vector �eld − ∂

∂r , de�ned and smooth on the whole of M∗ and whose integral
lines are the incoming principal null geodesics, be future oriented. This time orientation is
consistent with the fact that, in Boyer-Lindquist coordinates, the Killing vector �eld ∂

∂t is
future oriented outside the ergosphere in block I and also with the description of block II
given at the beginning of the chapter, with − ∂

∂r (in Boyer-Lindquist coordinates) future
pointing. This space-time contains all three blocks, glued smoothly at the horizons by
the requirement that incoming principal null geodesics should cross horizons smoothly and
that their orientation de�nes the time orientation. Block II is thus glued to block I in such
a way that it lies in the future of block I and similarly, block III lies in the future of block
II. The horizons {r = r+} and {r = r−} are smooth null hypersurfaces of (M∗, g). The
fact that they are null is easily shown considering the metric induced by g on hypersurfaces
of constant r

gr = gttdt∗
2 + 2gtϕdt∗dϕ∗ + gϕϕdϕ∗2 − ρ2dθ2 .

This induced metric has determinent

det(gr) = −ρ2
(
gttgϕϕ − (gtϕ)2

)
= ρ2∆ sin2 θ

and thus degenerates for ∆ = 0, i.e. at the horizons. See �gure 7.1 for a Penrose diagram
of Kerr-star space-time.

This construction is similar to what we did in Schwarzschild's space-time, when we �rst
used Kruskal-Szekeres coordinates to show that the metric could be extended smoothly
across the horizon. In the Schwarzschild case, the maximal extension of the space-time
followed naturally by extending the domain of de�nition of the Kruskal-Szekeres coordinate
system. This we cannot do here since the domain of de�nition of Kerr-star coordinates is
already maximal. We shall need to use other coordinate systems which will allow us to
glue Boyer-Lindquist blocks in di�erent manners.

Kerr-star coordinates were de�ned by modifying Boyer-Lindquist coordinates so that
incoming principal null geodesics could become coordinate lines. Using outgoing principal
null geodesics instead of the incoming ones, we obtain the star-Kerr coordinate system.
These geodesics are de�ned on all three blocks in Boyer-Lindquist coordinates by

ṫ =
r2 + a2

∆
, ṙ = 1 , θ̇ = 0 , ϕ̇ =

a

∆
.

Keeping r and θ, we introduce the new coordinates

∗t = t− T (r) , ∗ϕ = ϕ−A(r)

where the functions T and A are the same used to de�ne t∗ and ϕ∗. In the star-Kerr
coordinate system (∗t, r, θ, ∗ϕ), the outgoing principal null geodesics are the r coordinate
lines parametrized by s = r and the Kerr metric takes the form

g = gttd(∗t)2 + 2gtϕd(∗t)d(∗ϕ) + gϕϕd(∗ϕ)2 − ρ2dθ2

+2d(∗t)dr − 2a sin2 θ d(∗ϕ)dr . (7.8)

This gives rise to star-Kerr space-time which is the manifold

∗M = R ∗t × Rr × S2
θ,∗ϕ \

{
(∗t, r, θ, ∗ϕ) ; r = 0 and θ =

π

2

}
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Figure 7.1: Penrose diagrams of Kerr-star and star-Kerr space-times

equipped with the smooth metric (7.8) and time orientation such that, in star-Kerr co-
ordinates, the null coordinate vector �eld ∂

∂r , which is de�ned and smooth all over ∗M
and whose integral lines are the outgoing principal null geodesics, is future pointing. This
space-time contains all three blocks, glued together at the horizons which appear as reg-
ular null hypersurfaces. The gluing is done by requiring that the outgoing principal null
geodesics should cross the horizons smoothly. The time orientation re�ects this choice ; it
is consistent with the fact that in Boyer-Lindquist coordinates ∂

∂t is future pointing outside

the ergosphere in block I, but incompatible with − ∂
∂r future oriented in block II : in star-

Kerr space-time, the inertial frames in bloc II are dragged outwards from the inner horizon
to the outer horizon. There is a canonical isometry between star-Kerr and Kerr-star space-
times. This isometry preserves the time orientation of blocks I and III but reverses that
of block II. Star-Kerr space-time can be seen as a block I, to the past of which is glued
a block II with its time orientation reversed, to the past of which is glued a block III :
it describes a �slow Kerr white hole�. See �gure 7.1 for the Penrose diagram of star-Kerr
space-time (II′ refers to a block II with reversed time orientation).

7.2.2 Maximal slow Kerr space-time

The maximal analytic extension of slow Kerr space-time is constructed using both Kerr-
star and star-Kerr space-times. We start with Kerr-star space-time : all the incoming
principal null geodesics are complete but the outgoing ones are not. The idea is to glue
other blocks so as to make the outgoing principal null geodesics complete. The solution for
blocks I and III is simple : we consider them as belonging to star-Kerr space-times, i.e. we
glue to the future of block III a block II′ followed by a new block I and to the past of block
I a block II′ preceded by a new block III. For block II, the situation is trickier ; we also
wish to understand block II as part of a star-Kerr space-time, but this is incompatible with
the time orientation of block II. The solution is to reverse the time orientation of the whole
star-Kerr space-time. We are thus led to gluing to the future of block II a block III′ (block
III with its time orientation reversed) and to its past a block I′ (block I with reversed time
orientation). The resulting space-time is shown in �gure 7.3. We keep on extending this
new space-time wherever a family of principal null geodesics is incomplete. The extension
is done step by step and is based on the same simple principle : if a family of principle null
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geodesics is incomplete, it means that the Kerr-star (in the incoming case) or star-Kerr
(in the outgoing case) space-time which it generates lacks one or two blocks ; this is cured
by gluing the lacking blocks, bearing in mind the consistency of the time orientation of
the whole space-time. In this manner, we construct maximal slow Kerr space-time (see
�gure 7.2) as a reunion of four types of space-times : Kerr-star space-times, Kerr-star
with their time orientation reversed, star-Kerr and star-Kerr with their time orientation
reversed. Important objects in this maximal extension are the so-called Kruskal domains.
They are �diamond shaped� reunions of four contiguous blocks. At their �centre� lies a
2-sphere, referred to as the crossing sphere, where the horizons intersect. Building this
crossing sphere rigorously and extending the metric over it are important di�culties in
the construction of maximal slow Kerr space-time. This is done by means of Kruskal-
Boyer-Lindquist coordinates (see [19] for a fully detailed account). There are two types of
Kruskal domains, as shown in �gure 7.4. Type II-III contains two copies of block III ; it is
not causal, therefore not globally hyperbolic, and contains two timelike singularities (the
ring singularity of each block III). Because of the lack of causality, the notion of Cauchy
problem is not even meaningful on type II-III domains. Type I-II domains are much more
gentle. They are globally hyperbolic and contain no singularity. They can be treated in
exactly the same manner as maximal Schwarzschild space-time.

For a type I-II Kruskal domain, we consider a foliation {Sτ}τ∈R (see �gure 7.5) by Cauchy
hypersurfaces such that, outside the domain of dependence of a neighbourhood of the
crossing sphere, for each τ ∈ R the hypersurface Sτ coincides in block I with the level
hypersurface Στ = {t = τ} of the time coordinate t of Boyer-Lindquist coordinates and in
block I′ with Σ−τ (su�ce it to say that the Boyer-Lindquist coordinates in blocks I, II, I′

and II′ are de�ned unambiguously from the Kruskal-Boyer-Lindquist coordinates de�ned
on the whole domain).
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Figure 7.2: Maximal slow
Kerr space-time

Figure 7.3: First step in the
construction of maximal slow
Kerr space-time

Figure 7.4: The two different
types of Kruskal domains



88 CHAPTER 7. THE KERR METRIC

Figure 7.5: Foliation of a type I-II Kruskal domain



Chapter 8

Conformal compacti�cations

The notion of conformal compacti�cation was introduced by Roger Penrose in the 1960's
(voir Penrose 1963 [21], 1964 [22] and 1965 [23]). This chapter reviews classic material
that can be found in details in Penrose & Rindler Vol. 2 [24].

Consider a spacetime (M, g), which may possess a boundary, but more importantly has
some spacelike asymptotic end, i.e. some spacelike geodesics have in�nite length. The idea
of conformal compacti�cation is to multiply the spacetime metric g by a positive function
Ω2 (Ω > 0 being called the conformal factor), that tends to zero at in�nity, in such a way
that for the new metric ĝ := Ω2g, the boundary of the spacetime (M, ĝ) is larger than
that of (M, g). We denote by

(
M, ĝ

)
the closure of (M, ĝ). The spacetime

(
M, ĝ

)
is

called a conformal compacti�cation of (M, g). It is not required to be compact, in fact,
the constructions in which the conformally compacti�ed spacetime is compact are quite
exceptional and usually do not correspond to physically relevent spacetimes.

8.1 Conformal rescalings, conformal invariance

De�nition 8.1 (Conformal class). Consider a spacetime (M, g). We say that a metric ĝ
on M is conformally equivalent to g if there exists a positive nowhere vanishing smooth
function Ω on M such that ĝ = Ω2g. The conformal class [g] of g is the set of all metrics
on M that are conformally equivalent to g.

De�nition 8.2 (Conformal Killing vector). A conformal Killing vector �eld on a spacetime
(M, g) is a vector �eld Ka on M such that there exists a metric ĝ ∈ [g] for which Ka is a
Killing vector.

The conformal Killing vectors satisfy an equation similar to Killing vectors.

Proposition 8.1. A vector �eld Ka on a spacetime (M, g) is a conformal Killing vector
�eld if and only if its Killing form ∇(aKb) is proportional to the metric gab.

Proof. (TO BE CONTINUED...) (should be established in the de�nition of Killing
�elds)

Provided we always work with the Levi-Civita connection associated with each metric,
we can calculate the transformation of connection coe�cients and of the curvature tensor
under a conformal rescaling. A particularly useful formula is for the scalar curvature. For
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the sake of clarity we shall denote Scalg the scalar curvature associated to a metric g and
its Levi-Civita connection.

First, we calculate the change in the connection coe�cients. It is expressed by the
following formula : given a 1-form ωa :

∇̂aωb = ∇aωb − Cc
abωc ,

where ∇̂ and ∇ are respectively the Levi-Civita connections associated with the metrics
ĝ and g and Ca

bc = Ca
(bc) denotes the change in the connection. The expression of the

coe�cients {Cc
ab} can be obtained using the same method as for calculating the Christo�el

symbols in a coordinate basis. We have ∇̂cĝab = 0 and also

∇̂cĝab = ∇cĝab − Cd
caĝdb − Cd

cbĝad .

This gives

Cd
caĝdb + Cd

cbĝad = ∇cĝab

and performing a permutation of indices

Cd
abĝdc + Cd

acĝbd = ∇aĝbc ,

Cd
bcĝda + Cd

baĝcd = ∇bĝca .

Using the symmetry of C and ĝ, taking the sum of the second and third equations minus
the �rst, we get

2Cd
abĝdc = ∇aĝbc +∇bĝca −∇cĝab ,

i.e.

Cd
ab =

1
2
ĝdc (∇aĝbc +∇bĝca −∇cĝab) . (8.1)

Now, using the relation between ĝ and g and the fact that ∇g = 0, we can make (8.1)
more explicit :

Cd
ab =

1
2
ĝdc (∇aĝbc +∇bĝca −∇cĝab)

=
1
2
ĝdc
(
gbc∇aΩ2 + gca∇bΩ2 − gab∇cΩ2

)
=

1
2Ω2

gdc2Ω (gbc∇aΩ + gca∇bΩ− gab∇cΩ)

= 2gd
(b∇a) log Ω− gab∇d log Ω . (8.2)

From this, the relation between the curvature tensors can be established as we established
the expression of the Riemann tensor in terms of Christo�el symbols is chapter 2. We are
merely interested in the transformation law for the scalar curvature here. To express it,
we need to introduce the d'Alembertian on (M, g). It is a covariant di�erential operator
on (M, g) denoted �g and de�ned by

�g = ∇a∇a (8.3)
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where ∇ is the Levi-Civita connection associated with g. When it acts on scalar �elds, its
expression in a local coordinate system {xa}a=0,1,2,3, is given by

�g =
1√
|det g|

∂

∂xa

√
|det g| gab ∂

∂xb
. (8.4)

The transformation of the scalar curvature under a conformal rescaling can be expressed
using the d'Alembertian of the initial or the resulting spacetime. For example, we have
the following result :

Theorem 8.1. Consider a spacetime (M, g) and a metric ĝ in the conformal class of g
with conformal factor Ω, i.e. ĝ = Ω2g, then

Scalĝ = 6Ω−3�gΩ + Ω−2Scalg .

See [25] appendic D for a detailed proof.

8.2 Compacti�cation of �at spacetime

8.2.1 The full compacti�cation

The Minkowski metric in spherical coordinates is expressed as

η = dt2 − dr2 − r2dω2 , dω2 = dθ2 + sin2 θ dϕ2 .

We choose the advanced and retarded coordinates

u = t− r , v = t+ r . (8.5)

The metric (3.1) in terms of these new coordinates takes the form

η = dudv − (v − u)2

4
dω2 .

We now introduce new null coordinates that allow us to describe the whole of Minkowski
space as a bounded domain :

p = arctanu , q = arctan v . (8.6)

We obtain

η = (1 + u2)(1 + v2)dpdq − (v − u)2

4
dω2 .

Finally coming back to time and space coordinates as follows,

τ = p+ q = arctan(t− r) + arctan(t+ r) ,
ζ = q − p = arctan(t+ r)− arctan(t− r) ,

(8.7)

we get

η =
(1 + u2)(1 + v2)

4
(
dτ2 − dζ2

)
− (v − u)2

4
dω2 .



92 CHAPTER 8. CONFORMAL COMPACTIFICATIONS

Choosing the conformal factor

Ω2 =
4

(1 + u2)(1 + v2)
=

4
(1 + tan2 p)(1 + tan2 q)

= (2 cos p cos q)2 , (8.8)

we obtain the rescaled metric

e := Ω2η = dτ2 − dζ2 − (v − u)2

(1 + u2)(1 + v2)
dω2

= dτ2 − dζ2 − ((tan q − tan p) cos p cos q)2 dω2

= dτ2 − dζ2 − (sin q cos p− sin p cos q)2 dω2

= dτ2 − dζ2 − (sin(q − p))2 dω2

= dτ2 − dζ2 − (sin ζ)2 dω2

= dτ2 − σ2
S3 ,

where σ2
S3 is the euclidian metric on the 3-sphere. Minkowski space is now described as

the diamond

M = {|τ |+ ζ ≤ π , ζ ≥ 0 , ω ∈ S2} .

The metric e is the Einstein metric, it extends analytically to the whole Einstein cylinder
E = Rτ × S3

ζ,θ,ϕ. The full conformal boundary of Minkowski space can be de�ned in this
framework. It is described as

∂M = {|τ |+ ζ = π , ζ ≥ 0 , ω ∈ S2} .

Several parts can be distinguished.

• Future and past null in�nities :

I + =
{
(τ , ζ , ω) ; τ + ζ = π , ζ ∈]0, π[ , ω ∈ S2

}
,

I − =
{
(τ , ζ , ω) ; ζ − τ = π , ζ ∈]0, π[ , ω ∈ S2

}
.

Proposition 8.2. The hypersurfaces I ± are smooth null hypersurfaces for e (hence
the terminology �null in�nities�). Their null generators are respectively the vector
�elds

∂τ − ∂ζ for I + and ∂τ + ∂ζ for I − .

Proof. They are clearly smooth hypersurfaces since e is analytic up to I ± and does
not degenerate there : its determinent

det (e) = − sin4 ζ sin2 θ

does not vanish on I ± (except for the usual coordinate singularity unavoidable when
working with spherical coordinates). Now the vector �elds ∂τ − ∂ζ and ∂τ + ∂ζ are
null and tangent respectively to I + and I −. They are orthogonal to the two other
generators of I ± : ∂θ and ∂ϕ. They are therefore normal to I + and I − respectively.
This proves the proposition.
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• Future and past timelike in�nities :

i± =
{
(τ = ±π , ζ = 0 , ω) ; ω ∈ S2

}
.

They are smooth points for e (2-spheres whose area is zero because they correspond
to ζ = 0).

• Spacelike in�nity :
i0 =

{
(τ = 0 , ζ = π , ω) ; ω ∈ S2

}
.

It is also a smooth point for e.

The scalar curvature of e can be calculated easily using theorem 8.1 for the conformal
factor Ω and the fact that the curvature tensor vanishes for Minkowski space :

1
6
Scale = Ω−3�ηΩ = 1 . (8.9)

8.2.2 A partial compacti�cation

There is another way we can compactify Minkowski space ; this is very convenient when one
is only interested in constructing null in�nity and not the rest of the conformal boudary.
It is a construction that in fact merely allows to construct I + or I − respectively but not
both at the same time. It goes as follows.

We consider the retarded time variable u = t − r and we perform an inversion on the
radial variable R = 1/r. We express the Minkowski metric in terms of the coordinates
u,R, θ, ϕ. We have

dt2 − dr2 = (du+ dr)2 − dr2

= du2 + 2dudr

= du2 − 2
R2

dudR ,

whence

η = du2 − 2
R2

dudR− 1
R2

dω2 . (8.10)

If now we multiply η by R2, we obtain

η̂ = R2du2 − 2dudR− dω2 ; (8.11)

which extends as an analytic metric on the domain Ru × [0,+∞[R × S2
θ,ϕ. Hence we can

add to Minkowski spacetime the boundary Ru×{R = 0}×S2
θ,ϕ. A point on this boundary,

(u = u0, R = 0, θ = θ0, ϕ = ϕ0) is reached along a radial null geodesic

γu0,θ0,ϕ0(r) = (t = r + u0, r, θ = θ0, ϕ = ϕ0)

as r → +∞ and there is a one-to-one correspondence between the outgoing radial null
geodesics and the points on the boundary. The boundary therefore represents future null
in�nity I +.

A similar construction using an advance time variable v = t+ r instead of u allows to
construct I − instead of I +.

The scalar curvature of the rescaled metric η̂ is zero.
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8.2.3 Conformal Killing vectors

In the full compacti�cation of Minkowski spacetime, we obtain a conformal Killing vector
that is a Killing vector for e : the time translation along the Einstein cylinger ∂τ . In
the partial compacti�cation there is another straightforward conformal Killing vector : ∂u.
However ∂u is exactly ∂t in the Schwarzschild coordinates and is therefore not a new vector
�eld.

There is another Killing vector �eld for η̂ that is not obvious in the expression of the
metric. It is usually referred to as the Morawetz vector �eld and is obtained from ∂t by
a light-cone inversion or Kelvin transform. Its expression as it was found by Cathleen
Morawetz in 1962 [18] is in spherical coordinates

(r2 + t2)
∂

∂t
+ 2tr

∂

∂r
.

Its simplest expression is in terms of the coordinate system involving the advanced and
retarded time variables u = t− r, v = t+ r and θ and ϕ :

Ka∂a = u2 ∂

∂u
+ v2 ∂

∂v
.

In the coordinate system u,R, θ, ϕ, it has the expression

Ka∂a = u2 ∂

∂u
− 2(1 + uR)

∂

∂R
. (8.12)

Theorem 8.2. The Morawetz vector �eld (8.12) is a Killing vector for η̂.

The proof is left as an exercice. A more general result will be proved in the framework
of the Schwarzschild metric.

The Morawetz vector �eld and the translation along the Einstein cylinder are in fact
very close to one another. If we express ∂τ in the coordinate system u,R, θ, ϕ, we obtain

∂τ =
1
2
[
∂u + u2∂u − 2(1 + uR)∂R

]
.

We see that

2∂τ = ∂u +Ka∂a ,

or in terms of variables t, r, θ, ϕ,

2∂τ = ∂t +Ka∂a .

8.3 Compacti�cation of Schwarzschild's spacetime

Schwarzschild's spacetime contains mass. This is apparent in the asymptotic behaviour of
the metric : some terms are proportional to the massM of the black hole and fall o� in 1/r
at in�nity. These terms prevent the construction of a complete regular compacti�cation
similar to what can be done with Minkowski spacetime. A partial compacti�cation however
is possible and just as easy as in the �at case. Instead of the variable t− r (resp. t+ r), it
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is based on the variable t− r∗ (resp. t+ r∗) that is a parameter of the family of outgoing
radial null geodesics.

In terms of variables u = t − r∗, R = 1/r, θ and ϕ, referred to as the Eddington-
Finkelstein coordinates, the Schwarzschild metric g takes the form

g = (1− 2MR)du2 − 2
R2

dudR− 1
R2

dω2 .

Rescaling the metric with the conformal factor Ω = R = 1/r, we obtain

ĝ = R2g = R2(1− 2MR)du2 − 2dudR− dω2 ,

which extends as an analytic metric on the domain Ru×
[
0, 1

2M

[
R
×S2

θ,ϕ. Similarly to the
Minkowski case, we can add a boundary to the exterior of the black hole : the hypersurface
Ru × {0}R × S2

θ,ϕ. A point (u0, 0, θ0, ϕ0) on the boundary is reached along the outgoing
radial null geodesic

γu0,θ0,ϕ0(r) = (t = r + 2MLog(r − 2M) + u0 , r , θ = θ0 , ϕ = ϕ0)

=
(
u = u0 , R =

1
r
, θ = θ0 , ϕ = ϕ0

)
as r → +∞ and there is a one to one correspondence between the points on the boundary
and the outgoing radial null geodesics. The hypersurface therefore represents future null
in�nity, I +, for the Schwarzschild metric.

Using theorem 8.1 and the fact that the scalar curvature of the Schwarzschild metric
is zero, we can calculate the scalar curvature of the rescaled metric ĝ = R2g and we �nd

1
6
Scalĝ = 2MR .

8.4 Conformal compacti�cation of Kerr's spacetime

This is analogous to the compacti�cation of Schwarzschild's spacetime. It is done for block
I only, using star-Kerr and Kerr-star coordinates and an inversion of the variable r. TO
BE CONTINUED...

8.5 Asymptotically simple spacetimes

8.6 exercices

Exercice 8.1. Prove theorem 8.2.

Exercice 8.2. Prove that the action on scalar �elds of the d'Alembertian (8.3) is given by
(8.4).
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Chapter 9

Conformal invariance and asymptotic

behaviour

The zero rest-mass �eld equations satisfy a property referred to as conformal invariance.
In essence, it means that when the metric is rescaled via a conformal transformation,
the equation transforms to the corresponding covariant equation for the rescaled metric,
provided the �eld is itself rescaled by a power of the conformal factor Ω. The appropriate
power of Ω for a given �eld is called its conformal weight. Zero rest-mass �elds have
conformal weight −1. Formally, if we denote a zero rest mass �eld equation by

Lg(φ) = 0 , (9.1)

then φ satis�es (9.1) if and only if

LΩ2g

(
Ω−1φ

)
= 0 .

9.1 The scalar wave equation

The scalar wave equation (or simply wave equation) is a covariant equation that models
the evolution of scalar �elds on a spacetime. On a given spacetime (M, g), it has the form

�gφ = 0 , (9.2)

where φ is a scalar function on M and �g is the d'Alembertian on (M, g) de�ned in a
local coordinate basis by (8.4).

De�nition 9.1 (Conformal invariance). The conformal invariance of a covariant equation
means that there exists s ∈ R such that a �eld φ satis�es the equation for the metric g if
and only if Ωsφ satis�es the equation for ĝ.

The wave equation (9.2) is not conformally invariant. However, a slight modi�cation
of this equation involving the scalar curvature is conformally invariant. We shall refer to
it as the conformal wave equation :

�gφ+
1
6
Scalgφ = 0 , (9.3)
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where Scalg denotes the scalar curvature associated to the metric g and its Levi-Civita con-
nection. More precisely, we have the following fundamental result that is a straightforward
consequence of theorem 8.1 :

Theorem 9.1. We consider a spacetime (M, g) and a metric ĝ in the conformal class of
g with conformal factor Ω, i.e. ĝ = Ω2g. The we have the equality of operators acting on
scalar �elds on M :

�g +
1
6
Scalg = Ω3

(
�ĝ +

1
6
Scalĝ

)
Ω−1 .

Proof. For a scalar �eld φ : ∇̂aφ = ∇aφ and given s ∈ R,

�ĝ(Ωsφ) = ĝab∇̂a∇̂b(Ωsφ) = Ω2gab (∇a∇b(Ωsφ)− Cc
ab∇c(Ωsφ))

= Ωs−2�gφ+ (2s+ n− 2)Ωs−3gab∇aΩ∇bφ

+(sΩs−3�gΩ)φ+ (s(n+ s− 3)Ωs−4gab∇aΩ∇bΩ)φ

Putting s = (2 − n)/2 gets rid of the second term in the right-hand side. The remainder
is a multiple of the scalar curvature. TO BE CONTINUED... (needs a more detailed
proof)

This has the immediate consequence :

Corollary 9.1. Let φ ∈ D′(M), the following conditions are equivalent :

1. φ satis�es (9.3) in the sense of distributions on M ;

2. φ̂ := Ω−1φ satis�es

�ĝφ̂+
1
6
Scalĝφ̂ = 0

in the sense of distributions on M.

9.2 Pointwise decay

Conformal invariance combined with a conformal compacti�cation allows to infer asymp-
totic properties of solutions to the wave equation on the �physical� spacetime from local
properties of the rescaled solution at the boundary of the compacti�ed spacetime. Such
constructions however will typically be valid for certain classes of data for the rescaled
equation ; these data should satisfy regularity assumptions at the boundary that can be
translated as asymptotic properties at in�nity for the corresponding physical data. The
most explicit example of this type of construction is in the framework of Minkowski space.
The situation in Schwarzschild's spacetime is more delicate as we shall see in chapter 10.

9.2.1 Pointwise decay in �at spacetime

Consider the conformal wave equation on the Einstein cylinder E = R × S3. By classic
results on hyperbolic equations due to Leray [15],
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Proposition 9.1. For any initial data

φ̂0 , φ̂1 ∈ C∞(S3) ,

the Cauchy problem

�eφ̂+
1
6
Scaleφ̂ = 0 , φ̂|τ=0

= φ̂0 , ∂τ φ̂|τ=0
= φ̂1

has a unique solution in C1(Rτ ; D′(S3)) and it is smooth on E.

The corresponding physical solution therefore admits the following pointwise decays :

Proposition 9.2. There exist smooth functions φ̂±∞ ∈ C∞(R× S2) such that

lim
r→+∞

rφ(t = r + u, r, ω) =
1√

1 + u2
φ̂+
∞(u, ω) ,

lim
r→+∞

rφ(t = −r + v, r, ω) =
1√

1 + v2
φ̂−∞(v, ω) .

The functions φ̂±∞ are simply the traces of φ̂ on I ± ; the two functions in the right hand
side of the limits above are referred to as the future and past asymptotic pro�les of φ.

There exists smooth functions f± ∈ C∞(S2) such that

lim
t→+∞

t2φ(t, r, ω) = 2f+(ω) ,

lim
t→−∞

t2φ(t, r, ω) = 2f−(ω) .

These functions are the traces of φ̂ at i+ and i− respectively.
In other words, the physical solution φ decays like 1/r along radial null geodesics and

like 1/t2 along the integral lines of ∂t.

Proof. The proof is trivial ; it is based of the explicit expression of Ω and on the
smoothness of φ̂ on E.

It is important to note that the result above has been established for solutions φ of the
wave equation on Minkowski spacetime such that φ̂ = Ω−1φ extends as a smooth function
on E. This entails some fall-o� assumptions on φ :

Proposition 9.3. The smoothness of φ̂0 and φ̂1 on S3 entails that there exist two smooth
functions g0, g1 ∈ C∞(S2) such that

lim
r→+∞

r2φ(0, r, ω) = 2g0(ω) ,

lim
r→+∞

r4∂tφ(0, r, ω) = 4g1(ω) .

The functions g0 and g1 are the traces of φ̂0 and φ̂1 at i0.

Proof. The �rst limit is a straightforward consequence of the regularity of φ̂ on E and
its relation to φ. As for the second limit, we have

∂tφ = (∂tΩ) φ̂+ Ω
∂τ

∂t
∂τ φ̂+ Ω

∂ζ

∂t
∂ζ φ̂

which for τ = 0 (i.e. t = 0) gives

∂tφ|t=0
=

4
(1 + r2)2

∂τ φ̂|τ=0
=

4
(1 + r2)2

φ̂1 .

This proves the proposition.
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9.2.2 Pointwise decay in Schwarzschild's spacetime

Since we only have a partial compacti�cation for Schwarzschild's spacetime, using the
same method based on a conformal compacti�cation and straightforward observations, we
cannot get a description of pointwise decay that is as complete as in the case of Minkowski
space. First of all, the t =constant slices are not compacti�ed, i.e. we have no natural
notion af data that are regular up to the boundary of the t = 0 slice. Hence, in order
to guarantee that the rescaled solution extends as a smooth function on the boundary of
the compacti�ed spacetime, we need to restrict ourselves to smooth compactly supported
data. Otherwise, we would need to have a clear understanding of the fall-o� assumptions
on initial data that ensure smoothness at I of the rescaled solution ; this is a much more
di�cult question that is dealt with in details in chapter 10. We have the following result
whose proof is straightforward.

Proposition 9.4. Let φ0, φ1 ∈ C∞0 (]2M,+∞[r×S2
ω). Then the Cauchy problem

�gφ = 0 , φ|t=0
= φ0 , ∂tφ|t=0

= φ1

has a unique solution
φ ∈ C1

(
Rt ; D′(]2M,+∞[r×S2

ω)
)

and it is smooth on Rt×]2M,+∞[r×S2
ω. Moreover the rescaled solution φ̂ = rφ has a

smooth trace on I + and on I −, i.e. there exist two smooth functions φ̂±∞ ∈ C∞(R× S2)
such that

lim
t→+∞

rφ(t, r∗ = t− u, ω) = φ̂+
∞(u, ω) , (9.4)

lim
t→+∞

rφ(t, r∗ = −t+ v, ω) = φ̂−∞(v, ω) . (9.5)

In particular, this shows that φ falls o� like 1/r along radial null geodesics.

The same result is valid for the Kerr geometry along principal null geodesics.



Chapter 10

Peeling

We have in the previous chapter used conformal compacti�cations to infer the asymptotic
behaviour of solutions to the wave equation on Minkowski or Schwarzschild spacetimes such
that the rescaled solution extend as smooth functions on the compacti�ed spacetime. These
constructions however only used the continuity of the rescaled solution at the boundary
(except for the fall-o� of physical initial data where we actually used the fact that the
rescaled solution was C1).

The peeling studies the precise regularity of the rescaled solution at I and its char-
acterization in terms of the regularity and fall-o� at in�nity of the physical initial data.
The peeling was initially proposed by Penrose in 1963 [21] as a model for the behaviour
of solutions to conformally invariant equations on generic asymptotically �at spacetimes.
It is based on the observation that in Minkowski spacetime, using the complete compact-
i�cation, we can establish a precise relation between the regularity at I of the rescaled
solutions and the regularity and asymptotic behaviour of the initial data for the associated
physical solutions. Penrose's conjecture was stating that on a generic asymptotically �at
spacetime (including Schwarzschild, Kerr, and physically realistic models of black holes in
an asymptotically �at universe) exactly the same assumptions on the physical data as in
Minkowski space should guarantee precisely the same regularity at I + for the rescaled
solution.

Peeling in �at spacetime has been well understood for linear equations since Penrose's
work. Concerning non-linear equations and more particularly the Einstein equations (i.e.
concerning non-linear perturbations of �at space-time), peeling properties have only been
recently established by Klainerman and Nicoló [13] (and in fact only for the �rst orders of
regularity). On the Schwarzschild metric, which is the simplest non trivial asymptotically
�at solution to the Einstein equations, the conjecture has remained totally open until now
and has been an extremely controversial issue.

10.1 Flat spacetime

Recall that the conformal invariance of the wave equation entails the equivalence of the
two properties :

(i) ψ̃ ∈ D′(M) satis�es the conformal wave equation on (M, η) ;
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(ii) ψ := Ω−1ψ̃ satis�es the conformal wave equation on the Einstein cylinder (E, e).

The conformal wave equation on �at space-time is simply the wave equation, which in
spherical coordinates has the expression

�ηψ̃ = 0 , �η = ∂2
t −

1
r2
∂rr

2∂r −
1
r2

∆S2 ; (10.1)

while on the Einstein cylinder, the conformal wave equation (using the fact that the scalar
curvature on the Einstein cylinder is equal to 6) is

�eψ + ψ = 0 , �e = ∂2
τ −∆S3 ; (10.2)

where Ω is de�ned by (8.8), i.e.

Ω2 =
4

(1 + (t+ r)2)(1 + (t− r)2)
.

10.1.1 The usual description of peeling

The observation of the peeling in Minkowski space is usually derived from the property
that the Cauchy problem on the Einstein cylinder is well-posed in the space of C∞ functions
(see proposition 9.1). This provides a natural de�nition of solutions that peel at all orders :

De�nition 10.1. A solution ψ̃ of (10.1) is said to peel at all orders if ψ = Ω−1ψ̃ extends as
a C∞ function on the whole Einstein cylinder. The latter property is satis�ed by solutions
ψ of (10.2) arising from initial data ψ|τ=0 ∈ C∞(S3) and ∂τψ|τ=0 ∈ C∞(S3). Going back
to Minkowski space and to the physical �eld ψ̃, this gives us a corresponding class of data
for (10.1), giving rise to solutions that peel at all orders.

10.1.2 Description by means of vector �eld methods

Although it is not commonly used, we can give a description of the peeling in Minkowski
space in terms of Sobolev spaces. This has the advantage of allowing a precise description
at all orders of regularity, which is trickier in Ck spaces that are less well controlled by the
evolution. To do so, we write equation (10.2) in its hamiltonian form

∂

∂τ

(
ψ
∂τψ

)
= iH

(
ψ
∂τψ

)
, H = −i

(
0 1

∆S3 − 1 0

)
and work on the Hilbert space

H = H1(S3)× L2(S3)

with the usual inner product〈(
f1

f2

)
,

(
g1
g2

)〉
H

=
∫

S3

(∇S3f1.∇S3 ḡ1 + f1ḡ1 + f2ḡ2) dµS3 ,

where ∇S3 is the Levi-Civitta connection and µS3 the measure induced by the Euclidian
metric on S3. We have :
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Proposition 10.1. The operator H with its natural domain D(H) = H2(S3)×H1(S3) is
self-adjoint on H and its successive domains are

D(Hk) = Hk+1(S3)×Hk(S3) .

Let k ∈ N. For any initial data ψ0 ∈ Hk+1(S3), ψ1 ∈ Hk(S3), there exists a unique
solution

ψ ∈
k+1⋂
l=0

Cl
(
Rτ ; Hk+1−l(S3)

)
of (10.2) such that ψ(0) = ψ0 and ∂τψ(0) = ψ1. In particular, ψ ∈ Hk+1

loc (E). Moreover,
for any 0 ≤ l ≤ k, ‖ψ(τ)‖2

Hl+1(S3)
+ ‖∂τψ(τ)‖2

Hl(S3)
is constant throughout time.

This gives us a de�nition of solutions that peel at a given order k ∈ N in terms of
Sobolev spaces :

De�nition 10.2. A solution ψ̃ of (10.1) is said to peel at order k ∈ N if ψ = Ω−1ψ̃ extends
as a function that is in Hk+1

loc on the whole Einstein cylinder. The latter property is satis�ed
by solutions ψ of (10.2) arising from initial data ψ|τ=0 ∈ Hk+1(S3) and ∂τψ|τ=0 ∈ Hk(S3).
Going back to Minkowski space and to the physical �eld ψ̃, this gives us a corresponding
class of data for (10.1), giving rise to solutions that peel at order k.

What is essentially unsatisfactory in de�nition 10.2 is that it merely provides an inclu-
sion : we know a class of data that gives rise to peeling at order k, but we do not know
whether it is the largest possible class. An alternative approach consists in using vector
�eld methods (energy estimates). Such techniques allow to prove easily the last property
in proposition 10.1 but are much more �exible than a purely spectral result : we can just as
naturally obtain estimates between the initial data surface and I +. This will provide us
with a third description of the peeling on �at space-time. It will be more precise than the
�rst two in that the optimal set of suitable data for a peeling at order k will be completely
characterized.

We consider the stress energy tensor for equation (10.2)

Tab = T(ab) = ∂aψ∂bψ −
1
2
eabe

cd∂cψ∂dψ +
1
2
ψ2eab (10.3)

and contract it with the Killing vector �eld ∂τ . This yields the conservation law

∇a
(
KbTab

)
= 0 . (10.4)

The energy 3-form KaTabd3xb = KaT b
a∂b dVol4 has the expression

KaTabd3xb = ψτ∇ψ dVol4 +
1
2

(
−ψ2

τ + |∇S3ψ|2 + ψ2
)
∂τ dVol4 . (10.5)

Integrating (10.5) on an oriented hypersurface S de�nes the energy �ux across this surface,
denoted ES(ψ). For instance, denotingXτ = {τ}×S3 the level hypersurfaces of the function
τ

EXτ (ψ) =
1
2

∫
Xτ

(
ψ2

τ + |∇S3ψ|2 + ψ2
)

dµS3 ,
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and parametrizing I + as τ = π − ζ,

EI +(ψ) =
1√
2

∫
I +

(
−2ψτψζ + ψ2

τ + |∇S3ψ|2 + ψ2
)

dµS3

=
1√
2

∫
I +

(
|ψτ − ψζ |2 +

1
sin2 ζ

|∇S2ψ|2 + ψ2

)
dµS3 .

This is a natural H1 norm of ψ on I +, involving only the tangential derivatives of ψ along
I +.

Now consider a smooth solution ψ of (10.2). The conservation law (10.4) tells us that
(10.5) is closed, hence, integrating it on the closed hypersurface made of the union of X0

and I +, we obtain
EI +(ψ) = EX0(ψ)

and since ∂τ is a Killing vector, for any k ∈ N, ∂k
τψ satis�es equation (10.2), whence

EI +(∂k
τψ) = EX0(∂

k
τψ) .

Using equation (10.2), for k = 2p, p ∈ N, we have

EX0(∂
k
τψ) = ‖∂2p

τ ψ‖2
H1(X0) + ‖∂2p+1

τ ψ‖2
L2(X0)

= ‖(1−∆S3)pψ‖2
H1(X0) + ‖(1−∆S3)p∂τψ‖2

L2(X0)

' ‖ψ‖2
H2p+1(X0) + ‖∂τψ‖2

H2p(X0) , (10.6)

and for k = 2p+ 1, p ∈ N,

EX0(∂
k
τψ) = ‖∂2p+1

τ ψ‖2
H1(X0) + ‖∂2p+2

τ ψ‖2
L2(X0)

= ‖(1−∆S3)p∂τψ‖2
H1(X0) + ‖(1−∆S3)p+1ψ‖2

L2(X0)

' ‖ψ‖2
H2p+2(X0) + ‖∂τψ‖2

H2p+1(X0) . (10.7)

Hence, we have for each k ∈ N :

‖ψ‖2
Hk+1(X0) + ‖∂τψ‖2

Hk(X0) ' EX0(∂
k
τψ) = EI +(∂k

τψ) ' ‖∂k
τψ‖2

H1(I +)

and using the fact that the Hk norm controls all the lower Sobolev norms, this gives us
the apparently stronger equivalence

‖ψ‖2
Hk+1(X0) + ‖∂τψ‖2

Hk(X0) '
k∑

p=0

‖∂p
τψ‖2

H1(I +) . (10.8)

Remark 10.1. This equivalence should not in principle be understood as providing a solu-
tion to a Goursat problem on I +. Indeed, in Lars Hörmander's paper on the Goursat prob-
lem for the wave equation [12], it is made very clear that such an equivalence only provides
us with a trace operator on I + that is a partial isometry, it is then necessary to prove the
surjectivity of this operator in order to solve the Goursat problem. However, we know from
the same paper that the Goursat problem for equation (10.2) with data ψ|I+

∈ H1(I +)
is well posed and gives rise to solutions ψ ∈ C0(Rτ ; H1(S3)) ∩ C1(Rτ ; L2(S3)). Hence
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equivalence (10.8) indeed provides us with a regularity result for the Goursat problem : data
on I + for which the norm on the right-hand side is �nite give rise to solutions that are
in Cl(Rτ ; Hk+1−l(S3)) for all 0 ≤ l ≤ k + 1.

This is however stronger than the information we are interested in. Equivalence (10.8)
simply says that for smooth solutions, the control of the transverse regularity on I + de-
scribed by EI +(∂p

τψ), 0 ≤ p ≤ k, is equivalent to that of the Hk+1 norm of the restriction of
ψ to X0 and the Hk norm of the restriction of ∂τψ to X0. By a standard density argument,
this shows that if we wish to guarantee, by means of some control on the initial data, that
the restriction to I + of ∂p

τψ, 0 ≤ p ≤ k, is in H1(I +), the optimal condition to impose
is that ψ|τ=0 ∈ Hk+1(X0) and ∂τψ|τ=0 ∈ Hk(X0).

This provides us with our third de�nition of peeling at order k and a characterization
by a function space of initial data.

De�nition 10.3. A solution ψ̃ of (10.1) is said to peel at order k ∈ N if the traces on I +

of ∂p
τψ, 0 ≤ p ≤ k, are in H1(I +). The optimal function space of initial data giving rise

to such property is de�ned by ψ|τ=0 ∈ Hk+1(S3) and ∂τψ|τ=0 ∈ Hk(S3).

Going back to Minkowski space and to the physical �eld ψ̃, this gives us the exact
function space of data for (10.1), giving rise to solutions that peel at order k.

Remark 10.2. The description given in de�nition 10.2 corresponds to the slightly weaker
approach, via the equality

EXτ (∂k
τψ) = EX0(∂

k
τψ) ∀ τ ∈ R ,

which entails

‖ψ‖Hk+1(Ω+) . ‖ψ‖2
Hk+1(X0) + ‖∂τψ‖2

Hk(X0) , (10.9)

where Ω+ is the 4-volume in the future of X0 and the past of I +. It is slightly weaker in the
way we understand the transverse regularity at I + (implicitly in terms of trace theorems
for Sobolev spaces), hence the fact that we have merely inequalities instead of equivalences.
But the spaces of initial data for which regularity at a given order is guaranteed near I +

are the same.

10.2 Peeling in the Schwarzschild case

The equation that we study is the conformally invariant wave equation(
�ĝ +

1
6
Scalĝ

)
φ = (�ĝ + 2mR)φ = 0 , (10.10)

�ĝ = −2∂u∂R − ∂RR
2 (1− 2mR) ∂R −∆S2 .

A distribution φ on the exterior of Schwarzschild's black hole satis�es (10.10) if and only
if φ̃ := Rφ satis�es

�gφ̃ = 0 .
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10.2.1 General strategy

We study peeling properties in the neighbourhood of i0 where the real problem is localized.
If one wishes, results can be extended to the whole of I + and the whole initial data surface
in a straightforward manner. Our work deals with what happens near i0.

We work with vector �eld methods, that is to say essentially energy estimates. We
start by obtaining some basic energy estimates between I + and the initial data surface
{t = 0}. Then, by applying some well chosen vector �elds (di�erential operators) to the
equation, we get some higher order estimates.

For the basic energy estimates, we need to �nd some vector �eld that is close to being
a Killing vector �eld for ĝ and that is transverse to I . We adapt the classic �Morawetz
vector �eld� to Schwarzschild's space-time just as Dafermos and Rodnianski did in [6].

10.2.2 The Morawetz vector �eld

For m = 0, the metric g is the Minkowski metric η and we have u = t− r. The Morawetz
vector �eld is de�ned as the image of ∂t, that is a Killing vector for η, by a light-cone
inversion. Its simplest expression is in terms of variables u = t− r and v = t+ r :

T a∂a = u2∂u + v2∂v ,

which, in terms of variables u,R gives

T a∂a := u2∂u − 2(1 + uR)∂R . (10.11)

This vector �eld is a Killing vector for ĝ form = 0, i.e. if we perform the time asymmetrical
compacti�cation for Minkowski spacetime, we obtain a rescaled metric for which T is a
Killing vector. It is interesting to note that the Killing vector ∂τ corresponding to the time
translation on the Einstein cylinder is a simple combination of T and ∂u in this coordinate
system :

2∂τ = ∂u + T a∂a ,

it is therefore also a Killing vector for ĝ for m = 0.
We keep the expression (10.11) in terms of variables u,R in the Schwarzschild case to

de�ne our approximate Killing vector �eld. We still refer to it as the Morawetz vector �eld
and denote it T .

T a is uniformly timelike in a neighbourhood of i0 and can therefore be used for obtaining
energy estimates with positive de�nite energies on spacelike hypersurfaces.

10.2.3 Stress energy tensor and energy density

We choose the stress-energy tensor for the free wave equation �ĝφ = 0

Tab = T(ab) = ∂aφ∂bφ−
1
2
ĝabĝ

cd∂cφ∂dφ ,

which, for φ solution of (10.10), satis�es ∇aTab = �φ∂bφ = −2mRφ∂bφ. Contracting Tab

with T a, we get the conservation law

∇a
(
T bTab

)
= Tab∇(aT b) − 2mRφT b∂bφ . (10.12)
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The hope is then that the error terms (on the right hand side), have a su�ciently nice
behaviour to allow a control via Gronwall-type arguments.

The energy density 3-form E(φ) associated with T a is given by :

E(φ) := T aTabd3xb = T aT b
a∂b dvol4

=
[
u2φ2

u +R2(1− 2mR)
(
u2φuφR − (1 + uR)φ2

R

)
+(1 + uR)|∇S2φ|2

]
du ∧ d2ω

+
1
2
[(

(2 + uR)2 − 2mu2R3
)
φ2

R + u2|∇S2φ|2
]
dR ∧ d2ω

+ angular terms . (10.13)

For a hypersurface S, we denote

ES(φ) :=
∫
S
E(φ) .

For instance,

EI +(φ) =
∫

I +

[
u2φ2

u + |∇S2φ|2
]
du ∧ d2ω .

We foliate the domain {u < u0 << −1} by the spacelike (except for s = 0) hypersurfaces

Hs := {u = −sr∗} , 0 ≤ s ≤ 1 ;

H1 is the {t = 0} hypersurface and H0 corresponds to I +.
The energy on the surface Hs is given uniformly equivalent to

EHs(φ) '
∫
Hs

(
u2φ2

u +
R

|u|
φ2

R + |∇S2φ|2
)

du ∧ d2ω . (10.14)

10.2.4 The fundamental energy estimates

For m = 0, T a is a Killing vector �eld for our rescaled metric ĝ (it is a conformal Killing
vector �eld for g and in fact a Killing vector �eld for ĝ). For m 6= 0, the Killing form for
T a is given by

∇(aTb) = 4mR2(3 + uR)du2 .

This gives
Tab∇aT b = 4mR2(3 + uR)φ2

R

which exhibits a nice fall-o� near I + and i0.
We need to choose a vector �eld V that will identify the di�erent hypersurfaces Hs,

and the conservation law (10.12) integrated over the domain {u < u0}, u0 << −1, gives
(draw a picture of the domain {u < u0} and de�ne the three hypersurfaces I +

u0
, Su0 and

H1,u0)∫
{u<u0}

∇a
(
T bTab

)
d4Vol = EI +

u0
+ ESu0

− EH1,u0

=
∫
{u<u0}

(
Tab∇(aT b) − 2mRφT b∂bφ

)
d4Vol

=
∫ 1

0

(∫
Hs,u0

(
Tab∇(aT b) − 2mRφT b∂bφ

)
V d4Vol

)
ds .
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Another way of understanding this kind of energy estimates that is more familiar to PDE
analysts is the following : we multiply equation (10.10) by Tφ and integrate the result
between s = 0 and s = 1. This is not quite precise enough however : it is implicitely
assumed that we have a well de�ned product structure on the domain {u < u0}, s being
a �time� variable and the space variables being chosen on I + or on H1 or any other Hs.
It is in order to de�ne this product structure that we need an identifying vector �eld V .
It will perform a splitting of the 4-volume measure into a part along the integral curves of
V that is simply ds and a 3-volume measure on each Hs de�ned as V d4Vol.

In this case, a natural identifying vector �eld ν 1 is given by

ν = r2∗R
2(1− 2mR)|u|−1∂R . (10.15)

The corresponding 3-volume measure on each Hs is then

ν dVol4|Hs = r2∗R
2(1− 2mR)|u|−1dud2ω|Hs .

Such a choice of identifying vector �eld νa, which is really associated with the choice of
parameter s for the foliation, will lead to error terms that cannot be controlled by the
energy density2 and therefore to the impossibility of performing a priori estimates.

To be more precise, the 4-volume error terms will be multiplied by

T a∂aφr
2
∗R

2(1− 2mR)|u|−1

and then considered as terms on the 3-surface Hs that we shall try to control by the energy
density. Supposing that the (squares of the) 4-volume error-terms are barely controlled by
the energy density, we have a problem, indeed :

T a∂aφν dVol4 ' uφu − 2(1 + uR)
1
u
φR .

The �rst term is naturally controlled by the energy density on the Hs slices, but not the
second, since u−1 is in�nitely larger than Ru−1 near I +.

All we need to do in order to solve this problem is the following change of parameter :

τ := −2
(√
s− 1

)
, so that

∂τ

∂s
= − 1√

s
. (10.16)

The change of sign and the −1 term are there purely for aesthetic reasons, the important
part is 2

√
s. This new parameter varies from 0 to 2 as s varies from 1 to 0. We denote

Στ(s) = Hs . (10.17)

1It needs to satisfy
∂s

∂ν
= − 1

r∗

∂u

∂ν
+

u

r2
∗

∂r∗
∂ν

= 1 ,

whence the expression (10.15) of ν obtained by imposing that it is colinear to ∂R, i.e. choosing ν parallel
to the level hypersurfaces of u ; this is natural given the shape of our domain {u < u0}.

2To be more precise, this does not occur for the fundamental estimates, because the scalar curvature
2mR gives us some extra fall-o� at I . For higher order estimates, commuting ∂R into the equation will
give error terms without any fall-o�. So the problem will occur as soon as we try to gain one extra degree
of regularity from the fundamental estimates.
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The natural new identifying vector �eld is

V = −
√
s ν = −

√
|u|
r∗
r2∗R

2(1− 2mR)|u|−1∂R = − (r∗R)3/2 (1− 2mR)

√
R

|u|
∂R . (10.18)

We get error terms on each Στ that are equivalent to :

(∇aT b)TabV dvol4 ' R2

√
R

|u|
φ2

Rdud2ω ,

(
−2mRφT b∂bφ

)
V dVol4 ' Rφ

√
R

|u|
(
u2∂uφ− 2(1 + uR)∂Rφ

)
dud2ω

.

(
R2φ2 + u2φ2

u +
R

|u|
φ2

R

)
dud2ω .

The only di�culty comes from the zero order term. We solve it by proving (simply by
integration by parts) the following estimate :

Lemma 10.1. Given u0 < 0, there exists a constant C > 0 such that for any f ∈ C∞0 (R),
we have ∫ u0

−∞
(φ(u))2 du ≤ C

∫ u0

−∞
u2
(
φ′(u)

)2 du .

This entails that the energy density controls the L2 norm on the Hs slices.
We see that this is much more than what we need, but for higher order estimates, we

will use all that this lemma gives us.
This allows us to obtain, via simple Gronwall estimates, the following estimates

Theorem 10.1. For u0 < 0, |u0| large enough, there exists a constant C > 0 such that,

EI +
u0

(φ) ≤ CEH1,u0
(φ) ,

EH1,u0
(φ) ≤ C

(
EI +

u0
(φ) + ESu0,s0

(φ)
)
.

10.2.5 Higher order estimates

Contrary to what happens for m = 0, where T is a Killing vector �eld, we cannot use it
here to raise the regularity, since

[T, [T, 2mR]] = 4mu(2 + uR) ,

so di�erentiating the equation several times using T will introduce potentials which blow
up near i0. Although this may appear as unfortunate, it is a blessing in disguise.

Instead, we use the vector �eld ∂R. We obtain

(� + 2mR)φR = 2(1− 3m)R∂RφR − 2(1− 6mR)φR − 2mφ . (10.19)

All the terms in the right hand-side can be controlled by the energy density for φR or φ
using when necessary the lemma above. It is clear that further di�erentiations using ∂R

will not raise any di�culty. We get the estimates



110 CHAPTER 10. PEELING

Theorem 10.2. For each k ∈ N, there exists a constant Ck > 0 such that, for any
solution φ of (10.10) associated to smooth compactly supported initial data, we have for all
0 ≤ s ≤ 1,

EIu0
(∂k

Rφ) ≤ C

k∑
p=0

EH1,u0
(∂p

Rφ) ,

EH1,u0
(∂k

Rφ) ≤ C

k∑
p=0

(
EI +

u0
(∂p

Rφ) + ESu0
(∂p

Rφ)
)
.

10.3 Conclusion

This gives us a simple characterization of the peeling

De�nition 10.4. We say that a solution φ of (10.10) peels at order k ∈ N if for all
polynomial P in ∂R and ∇2

S of order lower than or equal to k, we have EI +
u0

(Pφ) < +∞.

This means than for all p ∈ {0, 1, ..., k} we have for all q ∈ {0, 1, ..., p}, EI +
u0

(∂q
R∇

p−q
S2 φ) <

+∞.

This is of course valid for Minkowski space as well. So in �at spacetime, we have two
de�nitions of the peeling :

• a �rst one obtained using the embedding in the Einstein cylinder and the time trans-
lation of the Einstein cylinder (quite close to the Morawetz cector �eld) ;

• a second one using the time asymmetric compacti�cation and the vector �eld ∂R.

It turns out these two de�nitions are di�erent. The class of data given by the second
de�nition is larger than that given by the �rst. This is due to the fact that the vector �eld
we use for higher order estimates is characteristic (or null if one prefers this terminology),
which gives less stringent conditions than a timelike vector �eld that controls all spacelike
derivatives via the equation (the energies onH1 given by both constructions are equivalent).

So this is a complete veri�cation of the peeling model at all orders for the wave equation
on the Schwarzschild metric, as well a de�nition that is di�erent and possibly more relevent
de�nition of the sets of solutions admitting peeling at a given order. Why more relevent?
Because we show that we merely need to control the null derivative in the direction of
I + instead of a timelike derivative. It is in a way a propagation estimate : the other
null derivative does not give a contribution on I + so even if it lies in very weakly regular
spaces, it will not interfere with the regularity of the solution at I +.
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