L3 Mathématiques – Intégration Feuille 2 – Tribu Borélienne et fonctions mesurables

Exercice 1. Montrer que la tribu des Boréliens sur \mathbb{R} est engendrée indifféremment par l'un des sous-ensembles de $\mathcal{P}(\mathbb{R})$ suivants :

$$\mathcal{M}_{1} = \{ [a, b | /a, b \in \mathbb{R} \}, \ \mathcal{M}_{2} = \{ [a, b | /a, b \in \mathbb{R} \}, \ \mathcal{M}_{3} = \{ [a, b | /a, b \in \mathbb{R} \}, \ \mathcal{M}_{4} = \{ [a, b | /a, b \in \mathbb{R} \}, \ \mathcal{M}_{5} = \{] - \infty, b | /b \in \mathbb{R} \}, \ \mathcal{M}_{6} = \{] - \infty, b | /b \in \mathbb{R} \}, \ \mathcal{M}_{7} = \{ [a, + \infty [/a \in \mathbb{R} \}, \ \mathcal{M}_{8} = \{ [a, + \infty [/a \in \mathbb{R} \}. \ \mathcal{M}_{8} = \{ [a, + \infty [/a \in \mathbb{R}],$$

Exercice 2 (Exemples de boréliens).

- 1. Démontrer que $A = \{x \in \mathbb{R}; \ \exists n \in \mathbb{N}^*, \ |x n| < 1/n\}$ est un borélien de R.
- 2. Démontrer que les ensembles suivants sont des boréliens de \mathbb{R}^2 .
 - (a) La diagonale $\Delta = \{(x, x) \in \mathbb{R}^2; x \in \mathbb{R}\} \text{ de } \mathbb{R}^2.$
 - (b) $B = \{(x, y) \in \mathbb{R}^2; \ x^2 + y^2 = 1 \text{ et } x \notin \mathbb{Q}\}.$

Exercice 3. Prouver que les fonctions suivantes sont mesurables (Boréliennes) :

- 1. la fonction indicatrice de \mathbb{Q} ;
- 2. la fonction

$$f: x \mapsto \begin{vmatrix} x+1 & \text{si } x > 0, \\ -x & \text{si } x \le 0; \end{vmatrix}$$

- 3. la dérivée f' d'une fonction dérivable f;
- 4. la projection:

$$\pi_1: \mathbb{R}^2 \to \mathbb{R},$$
 $(x,y) \mapsto x.$

Exercice 4. Soit $f:(X,\mathcal{S})\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction mesurable, montrer que |f|, $f^+=\max(f,0)$ et $f^-=\min(-f,0)$ sont mesurables.

Exercice 5. Donner un exemple d'espace mesurable (E, \mathcal{T}) et d'application $f : E \to \mathbb{R}$ tels que |f| soit mesurable mais pas f.

Exercice 6. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction telle que $f \circ f$ est mesurable. Est-ce que f est mesurable?

- **Exercice 7.** 1. Fonction constante. Soit (X, \mathcal{S}) et (Y, \mathcal{T}) deux espaces mesurables, soit $y_0 \in Y$ et soit f la fonction définie sur X à valeurs dans Y par $f(x) = y_0$ pour tout $x \in X$. Montrer que f est mesurable.
 - 2. Fonction indicatrice. Soit (X, \mathcal{S}) un espace mesurable et $A \subset X$. Montrer que

$$\mathrm{Id}_A: \ (X,\mathcal{S}) \ \longrightarrow \ (\mathbb{R},\mathcal{P}(\mathbb{R}))$$
$$x \ \longmapsto \ \begin{cases} 1 & \mathrm{si} \ x \in A \\ 0 & \mathrm{si} \ x \notin A \end{cases}$$

est mesurable si et seulement si $A \in \mathcal{S}$.

Exercice 8. Soit (X, \mathcal{S}) et (Y, \mathcal{T}) deux espaces mesurables.

- 1. On suppose que $S = \mathcal{P}(X)$. Quelles applications de X dans Y sont mesurables?
- 2. On suppose que $S = \{\emptyset, X\}$ et $(Y, \mathcal{T}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Quelles applications de X dans \mathbb{R} sont mesurables?
- 3. On suppose que $S = \sigma(\{A\})$ pour une partie A de X donnée et $(Y, \mathcal{T}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Quelles applications de X dans Y sont mesurables?
- 4. Soit $f: X \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Quelle est la plus petite tribu sur X telle que f soit mesurable?

Exercice 9. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction monotone.

- 1. Montrer que, pour tout $c \in \mathbb{R}$, $f^{-1}(]-\infty,c[)$ est convexe.
- 2. On admet que les ensembles convexes de $\mathbb R$ sont les intervalles. En déduire que f est mesurable.

Exercice 10. Soit $n \geq 1$. On note f_n l'application de [0,1[dans \mathbb{R} qui à x associe la n-ième décimale de x dans son développement décimal propre. Démontrer que f_n est mesurable.

Exercice 11. On note $\mathcal{A} = \{A \subset \mathbb{R} \; ; \; x \in A \Longrightarrow -x \in A\}$. On rappelle (voir feuille 1) que \mathcal{A} est une tribu sur \mathbb{R} .

- 1. Soit $f:(\mathbb{R},\mathcal{F}_1)\to(\mathbb{R},\mathcal{F}_2)$ définie par $f(x)=x^3$. Vérifier si f est mesurable dans les cas suivant :
 - (a) $\mathcal{F}_1 = \mathcal{P}(\mathbb{R})$ et $\mathcal{F}_2 = \mathcal{A}$.
 - (b) $\mathcal{F}_1 = \mathcal{A} \text{ et } \mathcal{F}_2 = \mathcal{A} \cap \mathcal{B}(\mathbb{R}).$
 - (c) $\mathcal{F}_1 = \mathcal{A}$ et $\mathcal{F}_2 = \mathcal{P}(\mathbb{R})$.
 - (d) $\mathcal{F}_1 = \mathcal{A} \cap \mathcal{B}(\mathbb{R})$ et $\mathcal{F}_2 = \mathcal{B}(\mathbb{R})$.
- 2. Même question avec $g(x) = x^2$.

Exercice 12. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sauf en un nombre dénombrable de points. On veut montrer que f est Borélienne.

- 1. Soit A un borélien, montrer que f est Borélienne si et seulement si $f|_A$ et $f|_{A^c}$ sont Boréliennes.
- 2. Conclure.

Exercice 13 (Mesurable et limite simple de fonctions étagées). On veut montrer que toute fonction mesurable $f:(X,\mathcal{T})\to \left([0,+\infty],\mathcal{B}([0,+\infty])\right)$ est limite simple d'une suite croissante de fonctions étagées. On définit pour tout $n\in\mathbb{N}^*$ et pour tout $k\geq 1$:

$$A_{n,k} = \left\{ x \in X / \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\}, \quad 1 \le k \le n2^n$$

$$B_n = \{ x \in X/f(x) \ge n \}.$$

- 1. Pourquoi les ensembles $A_{n,k}$ et B_n sont-ils mesurables?
- 2. On pose $f_n(x) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathrm{Id}_{A_{n,k}} + n \mathrm{Id}_{B_n}(x)$. Montrer que les fonctions f_n sont étagées.
- 3. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ est croissante et converge simplement vers f.

Exercice 14 (Partie de \mathbb{R} non Borélienne). On note λ mesure de Lebesgue sur \mathbb{R} et on considère sur [0,1] la relation d'équivalence R définie par

$$x R y \iff x - y \in \mathbb{Q}.$$

On considère une partie A de [0,1] qui contient exactement un élément de chaque classe d'équivalence (on utilise ici l'axiome du choix).

- 1. Pour $q_1, q_2 \in \mathbb{Q}$ distincts, montrer que $(A + q_1) \cap (A + q_2) = \emptyset$.
- 2. Notons $B = \bigcup_{q \in \mathbb{Q} \cap [0,2]} (A+q)$.
 - (a) Que vaut $\lambda(B)$ en fonction de $\lambda(A)$?
 - (b) Montrer que $[1,2] \subset B \subset [0,3]$.
 - (c) En déduire que A n'est pas un borélien.
 - (d) En déduire une fonction non borélienne sur \mathbb{R} ?