L3 Mathématiques – Intégration Feuille 3 – Mesures

Exercice 1 (Questions de cours et exemples).

- 1. Rappeler la définition d'une mesure.
- 2. Montrer que la mesure de comptage définie sur $\mathcal{P}(\mathbb{R})$ par m(A) = card(A) est une mesure. Quelles sont les parties négligeables pour m?
- 3. Montrer que la mesure de Dirac en un point $a \in \mathbb{R}$, notée δ_a et définie par

$$\forall A \in \mathcal{P}(\mathbb{R}), \ \delta_a(A) = \begin{cases} 1 & \text{si } a \in A \\ 0 & \text{si } a \notin A \end{cases}$$

est une mesure sur $\mathcal{P}(\mathbb{R})$. Quelles sont les parties négligeables pour δ_a ?

- 4. Soit (E, \mathcal{T}, m) un espace mesuré.
 - (a) (croissance) Soit $A, B \in \mathcal{T}$ avec $A \subset B$. Montrer que $m(A) \leq m(B)$.
 - (b) (additivité) Soit $A, B \in \mathcal{T}$ tels que $m(A \cap B) < +\infty$, montrer que :

$$m(A \cup B) = m(A) + m(B) - m(A \cap B).$$

(c) (sous-additivité dénombrable) Pour toutes suites $(A_n)_{n\in\mathbb{N}} \in \mathcal{T}^{\mathbb{N}}$, montrer que :

$$m\Big(\bigcup_{n=0}^{+\infty} A_n\Big) \le \sum_{n=0}^{+\infty} m(A_n).$$

(d) (continuité 1) Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{T}^{\mathbb{N}}$ une suite croissante (i.e. $A_n\subset A_{n+1}$), montrer que :

$$m\Big(\bigcup_{n=0}^{+\infty} A_n\Big) = \lim_{n \to +\infty} m(A_n).$$

(e) (continuité 2) Soit $(B_n)_{n\in\mathbb{N}}\in\mathcal{T}^{\mathbb{N}}$ une suite décroissante (i.e. $B_{n+1}\subset B_n$). Si $m(B_1)$ finie, montrer que :

$$m\Big(\bigcap_{n=0}^{+\infty} B_n\Big) = \lim_{n \to +\infty} m(B_n).$$

(f) Cette dernière propriété est-elle vraie si on retire l'hypothèse $m(B_1)$ finie?

Exercice 2. On considère sur $\mathbb R$ la tribu $\mathcal A$ définie par

 $\mathcal{A} = \{ A \in \mathcal{P}(\mathbb{R}) | A \text{ est fini ou dénombrable ou } A^c \text{ est fini ou dénombrable} \}.$

Pour $A \in \mathcal{A}$, on pose m(A) = 0 si A est fini ou dénombrable et $m(A) = +\infty$ sinon. Montrer que m est une mesure.

Exercice 3. Soit (X, \mathcal{B}, μ) un espace mesuré où μ est une mesure de probabilité. On note $\mathcal{T} = \{A \in \mathcal{B}; \ \mu(A) = 0 \text{ ou } \mu(A) = 1\}$. Démontrer que \mathcal{T} est une tribu sur X.

Exercice 4 (Combinaison convexe de mesures). Soient μ_1, \ldots, μ_n des mesures définies sur un même espace mesurable (X, \mathcal{T}) . Soient également a_1, \ldots, a_n des réels positifs. On définit une application $\nu : \mathcal{T} \to [0, +\infty]$ par, pour tout $T \in \mathcal{T}$,

$$\nu(T) = \sum_{k=1}^{n} a_k \mu_k(T).$$

Démontrer que ν est une mesure sur la tribu \mathcal{T} .

Exercice 5 (Mesure trace). Soit (E, \mathcal{T}, m) un espace mesuré

- 1. Soit $F \in \mathcal{T}$. Montrer que la tribu trace de \mathcal{T} sur F, notée \mathcal{T}_F , est incluse dans \mathcal{T} (cette tribu est une tribu sur F). Montrer que la restriction de m à \mathcal{T}_F est une mesure sur \mathcal{T}_F . On l'appellera la trace de m sur F. Si $m(F) < +\infty$, cette mesure est finie.
- 2. Soit \mathcal{A} une tribu incluse dans \mathcal{T} . La restriction de m à \mathcal{A} est une mesure sur \mathcal{A} . Est-elle finie (resp. σ -finie) si m est finie (resp. σ -finie)?

Exercice 6. Soit (E, \mathcal{T}, m) un espace mesuré fini et $\left(A_n\right)_{n\in\mathbb{N}} \in \mathcal{T}^{\mathbb{N}}$ t.q. pour tout $n\in\mathbb{N}$, $m(A_n)=m(E)$. Montrer que $m\Big(\bigcap_{n\in\mathbb{N}}A_n\Big)=m(E)$. Donner un contre-exemple dans le cas où $m(E)=+\infty$.

Exercice 7. Soit (E, \mathcal{T}, m) un espace mesuré fini et $(A_n)_{n \in \mathbb{N}}$, $(B_n)_{n \in \mathbb{N}}$ des suites d'ensembles mesurables tels que $B_n \subset A_n$ pour tout $n \in \mathbb{N}$.

1. Montrer que
$$\left(\bigcup_{n\in\mathbb{N}}A_n\right)-\left(\bigcup_{n\in\mathbb{N}}B_n\right)\subset\bigcup_{n\in\mathbb{N}}\left(A_n-B_n\right)$$
.

2. Montrer que
$$m\left(\bigcup_{n\in\mathbb{N}}A_n\right)-m\left(\bigcup_{n\in\mathbb{N}}B_n\right)\leq \sum_{n\in\mathbb{N}}\left(m(A_n)-m(B_n)\right)$$
.