L3 Mathématiques – Intégration Feuille 4 – Mesure de Lebesgue

Exercice 1. Prouver ou réfuter les assertions suivantes.

- 1. Si A est une partie Lebesgue-mesurable de \mathbb{R} et $\lambda(A) > 0$, alors il existe un ouvert non vide $U \subset \mathbb{R}$ tel que $U \subset A$. Et réciproquement?
- 2. Si $B \subset \mathbb{R}$ est une partie Lebesgue-mesurable, et si $A \subset B$, alors A est Lebesgue-mesurable.
- 3. Soit U un ouvert de \mathbb{R} , $\lambda(U) = 0$ si et seulement si $U = \emptyset$.
- 4. Une partie Lebesgue-mesurable de \mathbb{R} de mesure finie est-elle forcément borné?
- 5. Un ouvert de \mathbb{R} de mesure finie est-il forcément borné?

Exercice 2. Soit (X, d) un espace métrique. Une mesure borélienne μ est « régulière » si $\forall A \in \mathcal{B}(X)$:

$$\mu(A) = \sup\{\mu(F); F \subset A \mid F \text{ ferm\'e}\} = \inf\{\mu(U); A \subset U \mid U \text{ ouvert}\}.$$

On rappelle (ou on admettra) que la mesure de Lebesgue est régulière.

1. Montrer que pour tout borélien A de mesure finie, et pour tout $\epsilon > 0$, il existe un fermé F_{ϵ} et un ouvert U_{ϵ} tels que :

$$F_{\epsilon} \subset A \subset U_{\epsilon} \text{ avec } \mu(U_{\epsilon} \setminus F_{\epsilon}) \leq \epsilon$$

2. Donner des exemples explicites de K_{ϵ} et U_{ϵ} dans les trois cas suivant : A = [0, 1], $B = \mathbb{Q}$, $C = [0, 1] \setminus \mathbb{Q}$.

Exercice 3.

1. On sait que les rationnels et les irrationnels sont denses dans \mathbb{R} . Montrer que l'ensemble

$$A = \left(\mathbb{Q} \cap [0,1]^c\right) \cup [0,1]$$

est dense dans \mathbb{R} et de mesure 1.

- 2. Cet ensemble est-il ouvert?
- 3. Donner un exemple d'ouvert dense dans \mathbb{R} de mesure 1.

Exercice 4.

- 1. Quelle est la mesure de Lebesgue de \mathbb{N} et de \mathbb{Q} ?
- 2. Plus généralement, montrer que toute partie dénombrable de \mathbb{R} est un Borélien et que sa mesure de Lebesgue est nulle.

Exercice 5.

- 1. Montrer que si un ensemble est de mesure nulle alors il est d'intérieur vide.
- 2. Montrer que la réciproque est fausse.

Exercice 6 (Ensemble de Cantor). On définit une suite d'intervalle $(A_n)_{n\in\mathbb{N}}$ comme suit :

- On considère ici $A_0 = [0, 1]$.
- On coupe cet intervalle en trois et on retire la partie centrale, on obtient

$$A_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1].$$

- Pour A_2 , on recommence sur chacun des intervalles : on coupe cet intervalle en trois et on retire la partie centrale.
- On continue ainsi par récurrence notre construction.
- 1. Montrer que la suite $(A_n)_{n\in\mathbb{N}}$ est décroissante. On notera K la "limite" de cette suite : $K = \bigcap_{n\in\mathbb{N}} A_n$.
- 2. Montrer que K est un compact de \mathbb{R} .
- 3. K est-il mesurable, si oui que vaut la mesure de Lebesgue de K?

4. Vérifier que
$$K = \left\{ x \in [0,1]/x = \sum_{n=0}^{+\infty} \frac{a_n}{3^n} / a_n \in \{0,2\} \right\}.$$

- 5. En déduire que K n'est pas dénombrable. Indication. On pourra raisonner par l'absurde, considérer $\varphi : \mathbb{N} \to K$ et le point $x = \sum_{n=0}^{+\infty} \frac{a_n}{3^n}$ où $a_n \neq \varphi(n)$ pour tout $n \in \mathbb{N}$.
- 6. On voit qu'il existe des Boréliens négligeables et non dénombrables.