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Conformal scattering and the Goursat

problem

Lionel J. MASON1 & Jean-Philippe NICOLAS2

Abstract

We work on a class of non-stationary vacuum space-times admitting a conformal
compactification that is smooth at null and timelike infinity. Via a conformal trans-
formation, the existence of a scattering operator for field equations is interpreted
as the well-posedness of a Goursat problem on null infinity. We solve the Goursat
problem in the case of Dirac and Maxwell fields. The case of the wave equation
is also discussed and it is shown why the method cannot be applied at present.
Then the conformal scattering operator is proved to be equivalent to an analytical
scattering operator defined in terms of classical wave operators.

1 Introduction

Scattering theory, used in the framework of general relativity, is a powerful tool for study-
ing the long-time influence of the geometry of space-time on the behaviour of fields.
Stationary scattering was in particular used by S. Chandrasekhar et al. [8] to calculate
the quasi-nomal modes (resonances) of field equations, of spin lower than or equal to
two, on black hole geometries such as Scharzschild and Kerr. Time-dependent scattering
was first used by J. Dimock [15] and J. Dimock and B. Kay [16, 17, 18] to describe the
asymptotic behaviour of classical and quantum scalar fields on the Schwarzschild metric.
Since then, many works in the same spirit have appeared, by A. Bachelot [1, 2, 3, 4, 5],
A. Bachelot and A. Motet-Bachelot [6], D. Häfner [22, 23], D. Häfner and J.-P. Nicolas
[24], F. Melnyk [31, 32], J.-P. Nicolas [33]. As a result, we now have a rather detailed
understanding of the classical and quantum scattering by a spherically symmetric eternal
black hole, including proofs of the Hawking effect, and our grasp of the Kerr case is slowly
improving.

All the methods used in the works just cited, however successful they may have been,
suffer from a common drawback : they rely heavily on spectral methods and therefore
can only be applied in time independent situations (space-times with a Killing vector that
can be interpreted as the time coordinate vector field, which does not necessarily mean
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stationary, e.g. Kerr). This constraint is purely technical. The relevent information for
the development of a scattering theory in relativity is the asymptotics of the metric. These
asymptotics are encoded in those of the field equations and then extracted by means of
spectral techniques to obtain a scattering theory. It is these spectral techniques that are
incompatible with generic time-dependence. The purpose of this paper is to show that,
using more geometrical methods, it is possible to extract directly from the asymptotics
of the metric, information on the scattering properties of fields ; the results obtained are
completely equivalent to those obtained by analytical scattering techniques.

The main tool is the Penrose conformal compactification : a space-time (M , g) is

represented by an “un-physical” space-time (M̂ , ĝ), ĝ being a conformal rescaling of g,
whose boundary (made of two null hypersurfaces I ± and “points” i± and i0) describes the
infinity in the original space-time. The asymptotics of the physical metric g are encoded

into the regularity of ĝ at the boundary of M̂ . The asymptotic behaviour of solutions of
covariant hyperbolic and conformally invariant field equations is then entirely described
by the trace of the solutions of the rescaled equations on I ±. The idea is then to interpret
the notion of scattering operator, at the level of the rescaled space-time, as an operator
that to the trace of the rescaled field on I − associates its trace on I +. To show that
this operator is well-defined and is an isomorphism between adequate function spaces, it
is necessary to solve the Goursat problem (or characteristic Cauchy problem) on I ± for
the rescaled equation.

The essential ideas concerning the Goursat problem on I ± were developed by R.
Penrose in [35]. The first use of these techniques for constructing a scattering theory is
due to F.G. Friedlander [20, 21] in the context of static space-times with regular conformal
structure at space-like infinity. The techniques were taken up again by J. Baez, I. Segal
and S. Zhou [7] ; this is a construction in Minkowski space for nonlinear, conformally
invariant wave equations, showing that the existence of a conformal scattering operator
(that to traces on I − associates traces on I +) is equivalent to a scattering theory defined
in terms of classical wave operators. Immediately after this work, L. Hörmander published
a short paper giving a rigorous proof of the solution of the Goursat problem for generic
wave equations on spatially compact space-times [26]. Since then, as far as we know, the
idea seems not to have been pushed further.

We work with space-times, referred to as smooth asymptotically simple space-times,
whose Penrose compactification is regular at timelike and null infinity. The notion of
asymptotically simple space-times was first introduced by R. Penrose (see for example [36]
vol. 2) and since the works of Corvino in 2000 [13], Chrusciel and Delay in 2002 and 2003
[11, 12] and Corvino and Schoen in 2003 [14], it is known that there are solutions of the
Einstein vacuum equations with full functional degrees of freedom in the initial data that
are asymptotically simple with prescribable regularity at null and timelike infinity. This
provides a generic framework of non stationary vacuum space-times with regular conformal
compactification. On such space-times, we construct a conformal scattering operator for
the Dirac and Maxwell equations and we prove the equivalence with analytical scattering
theories defined in terms of classical wave operators. The case of the wave equation
requires some extra details and will be treated fully in a separate paper; here we indicate
some of the main steps but dont give a complete treatment. The paper is organized as
follows :
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• Section 2 contains a description of the geometry of the space-times we work with
and their conformal compactification. The three equations we study are also de-
scribed, including the Cauchy problem, conserved quantities and conformal invari-
ance. Subsection 2.2 contains the important definitions (definitions 2.1 and 2.2) of
the spin-frames we shall use in the physical and rescaled space-times.

• The next section (section 3) describes the strategy of construction of the conformal
scattering operator (following the ideas of Hörmander in [26]) and contains the two
main theorems for Dirac and Maxwell fields.

• In section 4, we prove that the conformal scattering theories obtained are equivalent
to analytical scattering theories where the scattering operator is defined in terms
of classical wave operators. The comparison dynamics are as simple and visual as
can be since they are given by the flows of congruences of null geodesics near I ± ;
this gives a description of the scattering operator in terms of asymptotic profiles
rather than the more complex comparison dynamics. This part shows that the
conformal technique allows one to construct genuine scattering theories in generic
non-stationary frameworks where spectral methods cannot be applied. The technical
complexity of spectral methods is also far greater than that of conformal techniques.

• The technical issues are then treated in details in appendices : crucial estimates
used for the construction of the conformal scattering operator are given in appendix
A, appendix B contains the proofs of the theorems and the detailed construction of
a solution to the Goursat problem is done in appendix C.

This paper is the first step in a programme centred on conformal scattering in general
relativity. Subsequent studies will include a detailed treatment of the wave equation as
well as an alternative solution of the Goursat problem using the techniques of Hadamard
and Leray (as Friedlander did for the wave equation in [19]). A key issue that will also
be addressed is that of the peeling : what are the minimal conditions to impose on initial
data on a spacelike hypersurface to ensure that the trace of the solution on I ± is smooth?

2 Geometrical and analytical frameworks

2.1 Asymptotically simple space-times and the space-times of
Corvino-Schoen and Chrusciel-Delay

We work with the space-times constructed by Chrusciel and Delay [11, 12], Corvino [13],
and Corvino and Schoen [14]. These space-times are asymptotically simple with specifiable
regularity for null and timelike infinities and are diffeomorphic to the Schwarzschild or
Kerr space-time in a neighbourhood of spacelike infinity. We concentrate our attention
on the most regular case, where null and timelike infinities are smooth (meaning here
C∞). Our theorems can be extended to less regular cases but we do not wish to blur the
ideas by too many technical remarks. The minimum regularity of future and null infinity
compatible with our constructions will be discussed in subsequent papers.
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Let us first recall the definition of asymptotically simple space-times in the smooth,
asymptotically flat case. A 4-dimensional, globally hyperbolic, Lorentzian space-time
(M , g), M ≃ R

4, is called asymptotically simple if there exists another globally hyper-

bolic, Lorentzian space-time (M̂ , ĝ) and a smooth scalar function Ω on M̂ such that :

(i) M is an open submanifold of M̂ whose boundary is the union of two points i− and
i+ and a smooth null hypersurface (denoted I and pronounced scri, for “sript i”) ;
I is the disjoint union of the past light-cone I + of i+ and of the future light-cone
I − of i− ; I ± are referred to as future and past null infinities respectively and i±

as future and past timelike infinities respectively ;

(ii) Ω > 0, ĝ = Ω2g on M , Ω = 0 and dΩ 6= 0 on ∂M ;

(iii) every null geodesic in M acquires a future endpoint on I + and a past endpoint on
I −.

It follows from the definition above that I + (resp. I −) is the set of future (resp. past)
end-points of null geodesics and that i+ (resp. i−) is the set of future (resp. past) end-
points of uniformly timelike curves. We also define i0, or spacelike infinity, as the set of
boundary points of uniformly spacelike Cauchy hypersurfaces in M .

We denote by ∇ the Levi-Civita connection associated with the metric g and by ∇̂
the Levi-Civita connection associated with ĝ.

2.2 3+1 decompositions

In order to have a natural formulation of the Cauchy problem in the physical space-time,
we perform a 3 + 1 decomposition of the geometry that will allow us to express the field
equations as evolution equations. We choose on M a global smooth time function t, such
that ∇at is uniformly timelike on M , i.e.

∃ 0 < C1 < C2 < +∞ ; C1 ≤ gab∇at∇bt ≤ C2 at each point of M ,

and the second derivative of t tends to zero at infinity along any direction (timelike, null
or spacelike).

The foliation {Σt}t∈R of M by the level hypersurfaces of t is a foliation by smooth
Cauchy spacelike hypersurfaces, all diffeomorphic to Σ = R

3. Moreover, (Σ, h(t)) is
asymptotically flat for each t. We consider T a the future-oriented normal vector field
to the foliation, normalized so that T aTa = 2. This normalization is convenient in the
context of spinors ; TAA′ induces a Hermitian form on spin space and so we can choose
a unitary spin frame that is “adapted to the foliation” as defined in [34] meaning that
TAA′

= oAōA′

+ ιAῑA
′

in addition to ιAoA = 1. In such a spin-frame we have

TAA
′ = TAA

′

= Id2 , i.e. TAA′φAφ̄A′

=
∣∣φ0
∣∣2 +

∣∣φ1
∣∣2 , TAA′

φAφ̄A′ = |φ0|2 + |φ1|2 .

(Here we adopt the abstract index convention in which ordinary indices are abstract
markers specifying the vector bundle to which a given (spin-)tensor belongs and bold-face
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indices referring to concrete indices labelling components in a given frame.) The metric
g can be decomposed as follows :

gab =
1

2
TaTb − hab i.e. gabdx

adxb =
1

2
N2dt2 − h , (1)

where the lapse function N is defined by Tadx
a = Ndt and h is for each time t a smooth

Riemannian metric on Σt, it can therefore be considered as a smooth time-dependent
riemannian metric on R

3. The connection ∇a can likewise be decomposed along T a and
along (T a)⊥ :

∇a =
1

2
TaT

b ∇b − ha
b ∇b =

1

2
Ta∇T + Da , (2)

where ∇T = T a∇a is the covariant derivative along T a and Da = −ha
b ∇b is the part

of ∇a orthogonal to T a : T aDa = 0. Da is the four-dimensional covariant derivative
restricted to act tangent to Σt. It differs from the Levi-Civita connection on (Σt, h(t)) by
a combination of the extrinsic curvature (or second fundamental form) of the leaves of
the foliation. In particular DaTb = Kab = K(ab) is

√
2 times the extrinsic curvature. More

precisely we have
Kab = DaTb = ha

chb
d∇cTd

and obviously T aKab = 0. We introduce the following slightly different form of the space-
like covariant derivative

DAB = TA′

(A∇B)A′ = TA′

A DBA′ , DAB = T
(A
B′ ∇B)B′

= TA
B′DBB′

.

The product structure M ≃ R × Σ is fixed by identifying the points on different
hypersurfaces Σt along the integral lines of T a. This defines the vector field ∂/∂t as

∂

∂t
=

N√
2
T a ∂

∂xa
,

independently of the choice of local coordinates on Σ.
On the rescaled space-time, we shall use two different foliations. One given by the

hypersurfaces Σt, that approach I ± as t → ±∞ (see figure 1). We define a second foli-

ation as follows : we choose a global smooth time function τ on (M̂ , ĝ), such that ∇̂aτ
is a uniformly timelike vector field and τ(i±) = ±T , T > 0, and we consider the level
hypersurfaces of τ , Hτ . We assume in addition that H0 = Σ0 (see figure 2). The hypersur-
faces Hτ correspond, in the physical space-time, to hyperboloids that are asymptotically
null. In the rescaled space-time, they are smooth uniformly spacelike hypersurfaces, with
boundary I ∩ Hτ . Note that H±T is reduced to i±.

Using this new foliation, we can perform a 3 + 1 decomposition of ĝ and ∇̂. We denote
by T̂ a the future-oriented normal vector field to Hτ (for the metric ĝ), normalized so that
ĝabT̂

aT̂ b = 2. We have

ĝab =
1

2
T̂aT̂b − ĥab i.e. ĝabdx

adxb =
1

2
N̂2dτ 2 − ĥ , (3)

∇̂a =
1

2
T̂aT̂

b ∇̂b − ĥb
a ∇̂b =

1

2
T̂a∇̂T + D̂a , (4)
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Figure 1: The foliation {Σt} repre-
sented in the rescaled space-time.

Figure 2: The foliation {Hτ}τ whose
leaves are transverse to I .

where T̂adx
a = N̂dτ and ĥab is for each time τ ∈] − T, T [, a smooth Riemannian metric

on Hτ .

2.2.1 Spin frames

We can shoose a global smooth spin frame over all of M whose derivative tends to zero at
infinity (M is topologically trivial). Similarly one can choose a global smooth spin-frame

on M̂ . However, we will wish to adapt the spin-frames to the geometry of I , and this
cannot be done globally.3 These topological technicalities require us to use at least 3
spin-frames. However, they are all related by smooth bounded functions to a suitably
chosen global smooth spin-frame. Furthermore, the formulae that we use do not depend
on the choice of a spin-frame; densities for norms can be calculated locally on the separate
patches, but will agree on overlaps and so the local integrals can be added together with
a partition of unity to give the appropriate global norm. With these provisos, we choose
spin-frames on two neighbourhoods near I as follows:

Definition 2.1. On M̂ , near I , we choose a spin-frame (ôA, ι̂A), smooth except at i−

and i+, such that l̂a = ôA ¯̂oA′

is tangent to I −, n̂a = ι̂A¯̂ιA
′

is tangent to I +. Note that

3To be more specific, we wish to choose spin-frames in the unphysical space-time so that n̂a = ι̂Aι̂A
′

is
tangent to I +, and l̂a = ôAôA

′

is orthogonal to the cross-sections of I + given by the intersections with
Hτ . However, the complex vector m̂a = ôAι̂A

′

is determined by its real part (the real and imaginary parts
have the same length and are perpendicular) and so cannot be non-zero globally on the S2s. Furthermore,
such spin frames cannot continue smoothly over the interior of the hypersurfaces as n̂a defines a map
from the sphere to the light cone with nontrivial winding number and so cannot be extended smoothly
over the interior of some Hτ as this would deform the map to the trivial one. In total, then, we need
three sets to cover the space-time, two to cover the S2 factor near infinity on the complement of some
world tube K × R with K compact in each Hτ , and one to cover the interior of the space-time.
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such a spin-frame is necessarily singular at i±. We also assume that ι̂A = ιA near I +

and ôA = oA near I −.

This will be enough for our treatment of Dirac’s equation. In the Maxwell case,
however, we will wish to choose the spin-frames (oA, ιA) in the physical space-time and
(ôA, ι̂A) so that they are related by a rescaling :

Definition 2.2. We choose on M , near I , a spin-frame (oA, ιA) such that the associated
tetrad la = oAōA′

, na = ιAῑA
′

, ma = oAῑA
′

, m̄a = ιAōA′

, is a normalized Newman-Penrose
tetrad for the metric g and satisfies in addition :

• la extends to become a tangent to I − and na extends to become tangent to I + in

M̂ ;

• la + na = T a ;

• Ω−2la and Ω−1ma are smooth on I + and Ω−2na and Ω−1ma are smooth on I −.

On M̂ , the spin-frame (ôA, ι̂A), such that the associated tetrad l̂a, n̂a, m̂a, ¯̂ma is a nor-
malized Newman-Penrose tetrad for the metric ĝ, is then defined as a rescaling of (oA, ιA).
Consider two functions λ1 and λ2 on M such that, for t0 > 0 given,

• λ1 = Ω−1 in the future of the hypersurface Σt0, λ2 = Ω−1 in the past of Σ−t0,
λ1λ2 = Ω−1 on M ;

• λ1 and λ2 are positive and smooth on M ,

then we define (ôA, ι̂A) by ôA = λ1o
A , ι̂A = λ2ι

A.

2.3 The Cauchy problem in the physical space-time

On each Σt, we consider the standard Sobolev spaces :

Definition 2.3. Given B a vector bundle on Σ and k ∈ N, we define Hk (Σt ; B) as the
completion of the space C∞

0 (Σt ; B) of smooth compactly supported sections of B in the
norm :

‖ψ‖2
Hk(Σt)

=

∫

Σ

∑

|α|≤k

〈∇αψ,∇αψ〉g dVolg ,

where 〈., .〉g and dVolg are the inner product and the volume form on Σt induced by the
metric g (i.e. by the metric h(t)).

Implicit in this definition is a choice of metric on the bundle B. In this paper, the
bundles will be tensor bundles over the 2-component spinors and these do not have a
natural positive definite metric. However, when working on a space-like hypersurface,
the normal vector TAA′

provides a good choice although any other normalized uniformly
time-like vector field will do.
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Remark 2.1. For any t1, t2 ∈ R, the metrics h(t1) and h(t2) are uniformly equivalent on
Σ. Moreover, asymptotic simplicity and the way the function t was chosen entail that this
equivalence is also uniform in time. Consequently, the Sobolev spaces Hk(Σt ; B) consid-
ered as Hilbert spaces on Σ are all uniformly isomorphic to Hk(Σ0 ; B). For simplicity,
we shall denote Hk(Σ0 ; B) by Hk(Σ ; B) and the hermitian product and volume form on
Σ0 by 〈., .〉 and dVol. When we wish to use explicitly the norm on a given Σt, we shall
come back to the complete notations Hk(Σt ; B), 〈., .〉g and dVolg.

Remark 2.2. For further simplicity, we shall often use formal notations : Ht will denote
a given Hilbert space on Σt and H the corresponding Hilbert space on Σ, equipped with
the H0 norm.

2.3.1 The wave equation

The conformally invariant scalar wave equation(
� +

1

6
Rg

)
φ = 0 , � = ∇a∇a , (5)

where Rg is the scalar curvature of the metric g, is expressed as an evolution equation as
(
∂2

∂t2
−
(
∂

∂t
logN

)
∂

∂t
− 1

2
N4∆̃ +

1

12
N2Rg

)
φ = 0 , ∆̃ = ∆h̃ , h̃ = N2h .

The energy for the standard wave equation

�gφ = 0 ,

associated with the timelike vector field T a is

E(φ, t) =

∫

Σt

T aTa0dVolg

=

∫

Σt

(
|∂tφ|2 +N2hαβ∂αφ∂βφ̄+ |φ|2

) 1

N
dVolg

where 8πTab = 2
∂φ

∂xa

∂φ̄

∂xb
− gabg

cd ∂φ

∂xc

∂φ̄

∂xd
.

The Cauchy problem for equation (5) is well-posed in any Sobolev space of integral order
on Σ. Cauchy data consists of the field on Σ0, φΣ0

, together with its first derivative
ψΣ0

= ∂φ/∂t|Σ0
. We have :

Lemma 2.1. For any k ∈ N
∗, for any (φσ0

, ψΣ0
) ∈ Hk(Σ) ⊕ Hk−1(Σ), there exists a

unique solution
φ ∈ C0

(
Rt ; Hk(Σ)

)
∩ C1

(
Rt ; Hk−1(Σ)

)

of (5) such that φ(0) = φΣ0
and ∂tφ(0) = ψΣ0

. In addition,

φ ∈
k⋂

l=0

Cl
(
Rt ; Hk−l(Σ)

)
.

This result is proved for general globally hyperbolic space-times in Y. Choquet-Bruhat,
D. Christodoulou and M. Francaviglia [10].

Characteristic data for the wave equation consists simply of φ restricted to the initial
null hypersurface (see [35]).
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2.3.2 Dirac fields

The massless Dirac equation reduces to the Weyl anti-neutrino equation

∇AA′

φA = 0 . (6)

Its 3 + 1 decomposition is given by

∇tφA = −
√

2N DB
AφB

where ∇t denotes ∇ ∂

∂t

. Although the energy momentum tensor does not lead to any

positive definite conserved quantity, a special feature of Dirac’s equation is that it admits
a closed 3-form, referred to as the charge or probability density

ω = ∗φAφ̄A′dxAA′

, ∇AA′ (
φAφ̄A′

)
= 0 . (7)

This leads to an exactly conserved L2 “energy”

‖φA‖2
L2(Σt)

=

∫

Σt

TAA′

φAφ̄A′dVolg =

∫

Σt

(
|φ0|2 + |φ1|2

)
dVolg = ‖φA‖2

L2(Σ0) , (8)

(the expression in terms of components of φA is valid for any spin-frame (oA, ιA) adapted
to the foliation {Σt}t) and to estimates for higher derivatives. The Cauchy data for (6)
consists of φA restricted to the initial data surface. The Cauchy problem for this equation
is well posed in all Sobolev spaces (see [34] for a detailed proof for generic symmetric
hyperbolic systems) :

Lemma 2.2. For any k ∈ N and ψA ∈ Hk(Σ ; SA), there exists a unique solution

φA ∈ C
(
Rt ; Hk(Σ ; SA)

)

of (6) such that φA(0) = ψA. Moreover,

φA ∈
k⋂

l=0

Cl
(
Rt ; Hk−l(Σ ; SA)

)
.

The characteristic data for a null hypersurface with null normal na = ιAῑA
′

is φ1 :=
φAι

A, [35].

2.3.3 Maxwell’s equations

We work with the field version of the equation here

∇AA′

φAB = 0 , φAB = φ(AB) , (9)

where the curvature 2-form of the electromagnetic field Fab = φABεA′B′ + φ̄A′B′εAB. The
energy momentum tensor is

Tab = φABφ̄A′B′
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and this is conserved, ∇aTab = 0 leading to energy estimates of the standard form for

E(φ, t) =

∫

Σt

T aTa0dVolg

=
1√
2

∫

Σt

(
|φ00|2 + 2|φ01|2 + |φ11|2

)
dVolg (10)

where in the above we have used a spin-frame in which TAA′

= oAōA′

+ ιAῑA
′

.
The Cauchy data for the Maxwell equations consists of φAB|Σ0

subject to the constraint

equations DAB
(
φAB|Σ0

)
= 0. It is easy to see that this constraint is preserved by the

evolution as a consequence of the identity ∇AA′∇B
A′φAB = 0. (There are 4 equations

for the three components of φAB so the system is overdetermined. However, this identity
shows that, in effect, the constraint equation is a consequence of the other three equations
if it is imposed on the initial data, so the system is consistent.)

In order to apply the theory of symmetric hyperbolic systems, we need to extract three
of the four equations that form one. To do this, we choose a time-like vector field, T a,
with T aTa = 2 and consider the equations TA′(A∇CA′

φB)C = 0. These are equivalent to
the evolution equations T c∇cφAB = DC

(AφB)C . These evolution equations admit energy

estimates for the energy (10) with the same T a ; they are a symmetric hyperbolic system
so that the Cauchy problem is well posed in Hk.

Lemma 2.3. For any k ∈ N and for any ψAB ∈ HK
(
Σ0 ; S(AB)

)
such that DABψAB = 0,

there exists a unique solution

φAB ∈ C
(
Rt ; Hk

(
Σ ; S(AB)

))

of (9) such that φAB(0) = ψAB ; that is to say, in particular, that DAB
(
φAB|Σt

)
= 0 for

all t ∈ R. Moreover

φAB ∈
k⋂

l=0

Cl
(
Rt ; Hk−l

(
Σ ; S(AB)

))
.

Remark 2.3. Note that the constraint on the hypersurfaces Σt take the form
(
TAA′∇B

A′φAB

)∣∣∣
Σt

= 0 .

We shall denote the space of constrained L2 data on Σt by L2
Maxwell

(
Σt ; S(AB)

)
or simply

L2
Maxwell (Σt).

The characteristic data for a null hypersurface with null normal na = ιAῑA
′

is φ2 =
φABι

AιB, [35].

2.4 The field equations on the rescaled space-time

We first define function spaces on the rescaled space-time, based on the ones we use on
the physical space-time. To a given Hilbert space Ht on Σt, we associate Ĥt its image
under the isometry φ 7→ Ω−1φ ; that is to say

‖φ‖Ht
=
∥∥Ω−1φ

∥∥
Ĥt

.
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If all the Ht norms are uniformly equivalent in time, then the Ĥt norms are all equivalent,
but not uniformly. We likewise use the notation Ĥ for Ĥ0 considered as a Hilbert space
on Σ.

All three equations are conformally invariant with φ 7→ Ω−1φ. This means that if we
denote formally the equation by

Lgφ = 0 , (11)

and if the Cauchy problem for (11) is well posed in a given Hilbert space H, then φ ∈
C(Rt ; H) is a solution of (11) if and only if φ̂ := Ω−1φ ∈ C(Rt ; Ĥ) is a solution of

Lĝφ̂ = 0 , (12)

where (12) is the covariant equation (11) with the metric g and its associated covariant
derivative replaced by ĝ and ∇̂.

Remark 2.4. An additional important property of Dirac’s equation is that the closed
3-form

ω = ∗
(
φAφ̄A′dxAA′

)

is conformally invariant, where ∗ is the Hodge ∗-operator, which on a 1-form is given by
∗αadx

a = 1
6
< αaεabcddx

bdxcdxd. The same is true in the Maxwell case of the 3-form

∗ (T aTabdx
b
)

= ∗
(
T aφABφ̄A′B′dxBB′

)

with T a remaining unrescaled.
So we see that in the Dirac case, if Ht is taken to be L2(Σt ; SA), the space Ĥt is simply

the natural L2 space on Σt associated to the metric ĝ, that we can denote L2
ĝ (Σt ; SA),

or L2 (Σt ; ĝ) if we do not wish to specify the bundle. In the Maxwell case however, since
the vector T a is not rescaled, if we take Ht = L2

Maxwell

(
Σt ; S(AB)

)
, then the space Ĥt will

be a weighted L2 space on Σt associated with the metric ĝ, the weight being exactly Ω.

The rescaled space-time is smooth and globally hyperbolic. Using the foliation {Hτ}τ

of M̂ and the 3 + 1 decomposition of ĝ, we obtain a well-posed Cauchy problem in some
natural Hilbert spaces defined on the hypersurfaces Hτ . These spaces depend on τ in
that the metric and the hypersurface Hτ both depend on τ , but they vary smoothly with
τ .

Finally we prove an important property of the equations we consider. This property
will entail the existence of trace operators on I ±.

Lemma 2.4. For C∞
0 data on Σ0 the corresponding solution φ̂ is smooth on M̂ and its

support remains away from i0.

Proof. The fact that the support of the solution remains away from i0 is a straight-
forward consequence of the finite propagation speed (see figure 3 for the shape of the
support). This allows us to deform, away from the support of the initial data, the space-
like hypersurface Σ0 into a hypersurface Σ̂0 that is spacelike for the metric ĝ but goes
across I + and remains away from i0.

11



Figure 3: Support of solution for compactly
supported data.

Figure 4: Construction of the hypersur-
face Σ̂0 and extension of the space-time
lying in the future of this hypersurface
as the smooth space-time M.

The part of the space-time M̂ that lies in the future of this hypersurface is completely reg-
ular and can be extended to a smooth Lorentzian globally hyperbolic space-time without
boundary (see figure 4), say (M = R × S3, G). The equation

LGΦ = 0

then admits a unique solution Φ ∈ C∞ (M). This is a consequence of Leray’s theorem
(see [29]) for symmetric hyperbolic systems on smooth globally hyperbolic space-times.
This solution Φ coincides with φ̂ in the part of the future of Σ̂0 that lies inside of M , by
local uniqueness of solutions of (12), consequence of the finite propagation speed. Hence,

φ̂ extends to a smooth function on M̂ .

3 The conformal scattering operator : strategy of

construction and main theorems

The construction of a conformal scattering operator is done in three main steps, following
the general strategy of Friedlander, [20], using techniques based on those in Hörmander’s
work [26].

First step : trace operators T± on I ±. In the conformal description of scattering,
this step is the easiest ; it is the construction of a trace operator that, to the initial
data on Σ0 associates the characteristic data on I ± of the corresponding solution.

We work with data in C∞
0 (Σ0). For such data, the solution φ̂ is smooth on M̂ .

Therefore we can define the trace of φ̂ on I ±. The equations being linear, the trace
depends linearly on the initial data. Then, for a well chosen Hilbert space Ĥ±

I
on

I ±, we prove an estimate of the form :

∃C > 0 ; ∀φ̂Σ0
∈ C∞

0 (Σ0) ,
∥∥∥φ̂±

I

∥∥∥
Ĥ±

I

≤ C
∥∥∥φ̂Σ0

∥∥∥
Ĥ

(13)

12



where φ̂±
I

is not the complete trace of φ̂ but its characteristic data on I ± : the
estimate (13) is obtained by integrating a 3-form on a closed hypersurface ; the part
integrated on I is degenerate and involves only one component of the trace of the
solution on I ±. This allows to define, by density of C∞

0 (Σ0) in Ĥ, bounded operators
T± from Ĥ to Ĥ±

I
, that to φ̂Σ0

associate φ̂±
I

. These operators are the analogues,
in this conformal construction, of inverse wave operators in usual analytical time-
dependent scattering theories.

Second step : The trace operators T± are one-to-one. We prove the estimate recipro-
qual to (13) :

∃C > 0 ; ∀φ̂Σ0
∈ C∞

0 (Σ0) ,
∥∥∥φ̂Σ0

∥∥∥
Ĥ
≤ C

∥∥∥φ̂±
I

∥∥∥
Ĥ±

I

. (14)

By density of C∞
0 (Σ) in Ĥ and by continuity of T±, this shows that T± is one-to-one

from Ĥ onto the closed sub-space T±Ĥ of Ĥ±
I

.

Third step : T± is an isomorphism. We show that for any φ̂±
I

∈ C∞
0 (I ±), where

we define C∞
0 (I ±) as the space of C∞ functions on I ± whose support remains

away from i0 and i±, there exists φ̂±
Σ0

∈ Ĥ such that T±φ̂±
Σ0

= φ̂±
I

. This amounts

to solving the Goursat problem on I ± with data φ̂±
I

. We thus obtain a densely
defined inverse to T± that is clearly continuous by estimate (14). Hence this densely
defined inverse can be extended to a bounded operator from Ĥ±

I
to Ĥ that is an

inverse for T±. The operators (T±)
−1

are the analogues of direct wave operators in
analytical time-dependent scattering theories. The conformal scattering operator is
then defined as

S := T
+
(
T

−)−1
. (15)

It is the operator that takes characteristic data at I − to the corresponding data at
I +.

Using this strategy, we prove the following theorems (details of proofs are given in
appendix B). The case of the wave equation remains open for the moment. We treat the

Dirac and Maxwell cases completely. We work with the spin-frames (ôA, ι̂A) on M̂ that
were introduced at the end of subsection 2.2 : that of definition 2.1 is enough for Dirac,
but for Maxwell we need to use the spin-frame of definition 2.2.

Theorem 1 (Dirac’s equation). Here we have H0 = L2(Σ0 ; SA). The trace operators

T±, that, to some initial data φ̂A

∣∣∣
Σ0

∈ C∞
0 (Σ0) for the rescaled equation

∇̂AA′

φ̂A = 0 , (16)

associate respectively the trace of φ̂1 on I + and the trace of φ̂0 on I −, extend as iso-
morphisms from Ĥ onto L2(I ± ; C).

Theorem 2 (Maxwell’s equation). Here the space H0 is the space of constrained L2

Maxwell data on Σ0 :

L2
Maxwell(Σ0) =

{
φAB ∈ L2(Σ0 ; S(AB)) ; D̂ABφ̂AB = 0

}
.
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The trace operators T±, that, to some constrained initial data φ̂AB ∈ Ĥ0 for the rescaled
equation

∇̂AA′

φ̂AB = 0 , (17)

associate respectively the trace of φ̂2 = ι̂Aι̂Bφ̂AB on I + and the trace of φ̂0 = ôAôBφ̂AB

on I −, extend as isomorphisms from Ĥ0 onto L2(I ± ; C).

Remark 3.1 (Null data and the trace on I of the rescaled field). For each field equation
considered here, the characteristic data on I ±, i.e. the data necessary for solving the
Goursat problem on I ±, contain less information than the Cauchy data on a spacelike
hypersurface or indeed the full trace of the field on I ± : for the wave equation, it is the
trace of φ̂ only with no information on ∂τ φ̂, for Dirac and Maxwell, it is the trace of
only one component of the field. It is however important to understand that, if the field
is regular enough, the remaining information is completely determined in terms of the
characteristic data by the restriction to I of the equation and some choice of boundary
condition. This restriction can be considered as a contraint equation on I . We illustrate
this remark in the case where the characteristic data is φ̂+

I
∈ C∞

0 (I +).

• Dirac’s equation : the null data φ̂+
I

is the trace of φ̂1 on I +. We use the expression
of the equation in terms of components

n̂a∇̂aφ̂0 − m̂a∇̂aφ̂1 + (µ− γ)φ̂0 + (τ − β)φ1 = 0 ,

l̂a∇̂aφ̂1 − ¯̂ma∇̂aφ̂0 + (α− π)φ̂0 + (ε− ρ)φ1 = 0 ,

µ, γ, τ , β, α, π, ε and ρ being spin coefficients (see [36] vol 1). The restriction of
the equation to I + is the first equation above ; it is an ordinary differential equation
along the null generators of I + that determines φ̂0 in terms of φ̂1 provided φ̂0 is
assumed to be zero at i+.

• Maxwell’s equations : the null data φ̂+
I

is the trace of φ̂2 on I +. This is similar to
the Dirac case. The full system is written in terms of components as

n̂a∇̂aφ̂0 − m̂a∇̂aφ̂1 + (µ− 2γ) φ̂0 + 2τ φ̂1 − σφ̂2 = 0 , (18)

n̂a∇̂aφ̂1 − m̂a∇̂aφ̂2 − νφ̂0 + 2µφ̂1 + (τ − 2β) φ̂2 = 0 , (19)

l̂a∇̂aφ̂1 − ¯̂ma∇̂aφ̂0 − (π − 2α) φ̂0 − 2ρφ̂1 + κφ̂2 = 0 , (20)

l̂a∇̂aφ̂2 − ¯̂ma∇̂aφ̂1 + λφ̂0 − 2πφ̂1 − (ρ− 2ε) φ̂2 = 0 , (21)

where φ̂0 = ôAôBφ̂AB, φ̂1 = ôAι̂Bφ̂AB, φ̂2 = ι̂Aι̂Bφ̂AB and κ, ρ, σ, τ , ε, α, β, γ,
π, λ, µ, ν are the spin-coefficients (see [36] vol. 1). The first two equations allow
to calculate φ̂0 and φ̂1 on I + in terms of φ̂2 if we assume that φ̂0 and φ̂1 are zero
at i+. Note that equation (18) is the contraction of the system (17) with the frame
vector m̂a, i.e. (18) is equivalent to m̂a∇B

A′φ̂AB = 0. Similarly, (19) is obtained by

contracting n̂a into (17), (20) by contraction with −l̂a and (21) by contraction with
− ˆ̄ma. The two constraint equations on I + (equations (18) and (19)) are therefore
equivalent to ι̂A

′∇̂A
A′φ̂AB = 0.

14



• The wave equation. The null data φ̂+
I

is the trace of φ on I +. The trace of ∂τ φ̂
on I + is here also determined in terms of the null data by an ordinary differential
equation along the generators of I +.

This remark will be crucial for finding a solution to the Goursat problem for Dirac’s and
Maxwell’s equations. For the wave equation however, we shall not need it. This fact is
further commented on in remark C.1.

4 Equivalence with conventional scattering theory

Let us first recall a very simple example of scattering theory defined in terms of classical
wave operators.

4.1 Analytic scattering theory for spin 1/2 in flat space

Consider the massless Dirac equation on Minkowski space, expressed in spherical coordi-
nates using a spin-frame (oA, ιA) associated with the Newman-Penrose tetrad

l =
1√
2

(∂t + ∂r) , n =
1√
2

(∂t − ∂r) , m =
1

r
√

2

(
∂θ +

i

sin θ
∂ϕ

)
:

(
∂t − σ1

(
∂r +

1

r

)
− 1

r
σ2

(
∂θ +

1

2
cot θ

)
− 1

r sin θ
σ3∂ϕ

)(
φ0

φ1

)
= 0 ,

where σ1, σ2, σ3 are the Pauli matrices

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
.

Replacing Φ = t(φ0, φ1) by Ψ = rΦ, we obtain the simpler form of the equation

∂tΨ = iHΨ , H = −iσ1∂r −
i

r
σ2

(
∂θ +

1

2
cot θ

)
− i

r sin θ
σ3∂ϕ .

The Hamiltonian H is self-adjoint on H = L2(R+ × S2 ; drdω) and thus defines the
unitary one-parameter group eitH that solves the equation in H. We introduce a simplified
dynamics

H0 = −iσ1∂r .

The operator H0 is self-adjoint on H0 = L2(R × S2 ; drdω) and the associated one-
parameter group eitH0 , when restricted to act on the spaces of outgoing and incoming
data, respectively

H+
0 =

{
Ψ =

(
0
ψ1

)
∈ H0

}
and H−

0 =

{
Ψ =

(
ψ0

0

)
∈ H0

}
,

reduces to a simple radial translation at speed ±1 :

eitH0

∣∣
H±

0

= e∓t∂r .
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Given any function χ(r) ∈ C∞([0,+∞[) such that χ ≡ 0 in the neighbourhood of 0, χ ≡ 1
for r large enough and 0 ≤ χ ≤ 1, we define the identifying operator

Jχ : H0 −→ H
Ψ 7−→ (χΨ)|

R+×S2 .

The wave operators

W±Ψ := lim
t→±∞

e−itHJχe
itH0Ψ , Ψ ∈ H±

0 ,

exist, are independent of the choice of χ and are complete, i.e. the inverse wave operators

W̃± := S-limt→±∞e
−itH0J ∗

χ e
itH ,

J ∗
χ :

H → H0

Ψ 7→ χ̃Ψ
, where χ̃Ψ =

∣∣∣∣
χΨ on R

+
r × S2 ,

0 on R
−
r × S2 ,

exist (where S-lim denotes the strong limit) and satisfy

W̃±W± = IdH±

0
, W±W̃± = IdH , W̃

± =
(
W±)∗ .

The scattering operator that describes the complete evolution of the field from its past
scattering data to its future scattering data is

S := W̃+W− .

A proof of these results can be found in [33]. It turns out that this example, however
simple it may appear, is a perfect model for the interpretation of our conformal scattering
operators in terms of wave operators.

The simplified dynamics eitH0 restricted to act on H±
0 is simply the flow of the outgo-

ing/incoming radial null vector field

v± =
∂

∂t
± ∂

∂r
.

The scattering data associated to such comparison dynamics are referred to as asymptotic
profiles. They provide a very visual and natural description of the scattering properties
of an equation : the solutions of the equation, as time becomes large, behave like a given
profile pushed along the flow of a simple vector field.

4.2 Wave operators for spin 1/2

In our asymptotically simple situation, for K a large enough compact set, we can find
a congruence of outgoing null geodesics, defining I + (i.e. each point of I + is reached
by one and only one of these geodesics), on R

+
t × (Σ \ K). Similarly, we can choose a

congruence of incoming null geodesics, defining I −, on R
−
t × (Σ\K). This is represented

on the compactified space-time M̂ in figure 5.
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Figure 5: Congruences of null geodesics outside Rt ×K.

As is done in appendix C (see figure 7), we extend the future and past null congruences
by timelike congruences inside [0,+∞[t×K (resp. ] −∞, 0]t ×K) to obtain two smooth
weakly timelike congruences : one of R

+
t ×Σ, denoted C +, the other of R

−
t ×Σ, denoted

C −.
We use these congruences to define the analogues of Jχe

itH0 and e−itH0J ∗
χ . First,

we choose a conformal factor Ω such that the metric ĝ and its inverse can be extended

continuously to i0 (and are therefore uniformly bounded on M̂ ). This is possible in the
Schwarzschild case (see [25]) and the result in the Kerr case should follow from the fact
that the Kerr metric is a short-range perturbation of the Schwarzschild metric ; the proof
however is not known to this day (as far as we are aware) although the possibility of
choosing such a conformal factor Ω should be seen as a (fairly safe) conjecture4.

Remark 4.1. For spinor fields in L2(I +), the norm is given by

∥∥∥φ̂A

∥∥∥
2

L2(I +)
=

∫

I +

φ̂A
¯̂
φA′n̂adVolI + =

∫

I +

|φ̂1|2dVolI + ,

and the information is reduced to that of the component φ̂1. The information of the
component φ̂0 is lost and is irrelevant to the definition of the Hilbert space. It can therefore
be projected to 0 in the definition of the analogues of Jχ. For φ̂A ∈ L2(I −) it is the other

component that is relevant and φ̂1 may therefore be taken to vanish in the analogues of
Jχ.

Definition 4.1 (of P
+
χ (t)). We consider a function χ ∈ C∞(Σ) such that χ ≡ 0 on K,

χ ≡ 1 outside a given bounded open set O containing K and 0 ≤ χ ≤ 1. We introduce the
operator P

+
χ (t) that to φ̂A = φ̂1ôA ∈ L2(I +) associates its projection onto Σt along the

congruence C +, multiplied by χ. The operator P
−
χ (t) is defined on elements of L2(I −) in

a symmetrical manner interchanging oA and ιA to define C − analagously to C +.

4It has so far not been possible in the Schwarzschild case to choose Ω such that ĝ is Lipschitz in a
neighbourhood of i0 (again, see [25]), although the question is not yet fully understood. The situation
should be similar in Kerr.
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Remark 4.2. It is important to note that the operator P
+
χ (t) could be defined in an

equivalent manner using merely the congruence of null geodesics outside R
+
t ×K and not

the congruence C +. For a spinor field φ̂A ∈ L2(I +), P
+
χ (t)φ̂A is the spinor field ψ̂A on

Σt defined as follows :

• ψ̂0 is identically zero ;

• ψ̂1 is zero inside of K ;

• outside of K, ψ̂1 is equal to the projection onto Σt \ K, along the congruence of
outgoing null geodesics, of φ̂1, multiplied by χ.

A similar symmetrical definition is valid for P
−
χ (t). This clearly decomposes P

±
χ (t) into

the action of a dynamics defined by the flow of a null geodesic congruence, followed by
a smooth cut-off. These operators are therefore the analogues of Jχe

itH0 in our simple
example.

Lemma 4.1. For our choice of conformal factor, the operator P
±
χ (t) is bounded from

L2(I ±) to L2(Σt), the norm being uniformly bounded in t ≥ 0 (resp. t ≤ 0).

Proof. It follows from the fact that the metric is uniformly bounded on M̂ and that
C ± is a smooth congruence.

We are now ready to define our direct and inverse wave operators and to state the
main theorem of this section. We denote by U(t, s) the propagator for equation (16) that
to data φ̂(s) ∈ L2(Σs) associates the restiction φ̂(t) of the associated solution to Σt.

Theorem 3. The wave operators

W± = S-limt→±∞U(0, t)P±
χ (t) , (22)

W̃± = S-limt→±∞
(
P
±
χ (t)

)∗ U(t, 0) , (23)

exist, i.e.

W± ∈ L
(
L2(I ±) ; Ĥ0

)
, W̃± ∈ L

(
Ĥ0 ; L2(I ±)

)
,

where H0 = L2 (Σ0 ; SA), are independent of the choices of K large enough and the
function χ and satisfy

W̃± =
(
W±)∗ , W̃±W± = IdL2(I ±) , W

±W̃± = IdĤ0
.

Remark 4.3. The operator
(
P
±
χ (t)

)∗
: Ĥt 7−→ L2(I ±)

acts by first multiplying a spinor field φ̂A ∈ Ĥt by χ and then by projecting it onto I ±

along the congruence C ±. Since the result is an element of L2(I ±), only its component[(
P

+
χ (t)

)∗
φ̂A

]
ι̂A (resp.

[(
P
−
χ (t)

)∗
φ̂A

]
ôA) is relevent, the other one may be taken to be

identically zero.

The proof of theorem 3, given in appendix B, shows in fact more than what is stated
in the theorem.

Theorem 4. We have in addition : W̃± = T±. Consequently, S = W̃+W−.
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4.3 The Maxwell case

Similarly to the Dirac case, we denote by U(t, s) the propagator for the rescaled equation
(17) that to constrained data on Σs associates the restriction to Σt of the corresponding
solution. We also consider χ ∈ C∞(Σ) such that χ ≡ 0 on K, χ ≡ 1 outside a given
bounded open set O containing K and 0 ≤ χ ≤ 1.

Definition 4.2. We introduce the operator P
±
χ (t) = χP±

K (t), the composition of the mul-
tiplication by χ with P±

K (for the definition of P±
K in the Maxwell case, see definition

C.4).

Theorem 5. The wave operators

W± = S-limt→±∞U(0, t)P±
χ (t) ,

W̃± = S-limt→±∞
(
P
±
χ (t)

)∗ U(t, 0) ,

exist, i.e.

W± ∈ L
(
L2(I ±) ; Ĥ0

)
, W̃± ∈ L

(
Ĥ0 ; L2(I ±)

)
,

where H0 = L2
Maxwell(Σ0), are independent of the choices of K large enough and the

function χ and satisfy

W̃± =
(
W±)∗ , W̃±W± = IdL2(I ±) , W

±W̃± = IdĤ0
.

We have in addition : W̃± = T±. Consequently, S = W̃+W−.

Remark 4.4. We see that the situation here is slightly more complicated than for Dirac.
The operator P

±
χ (t) is not merely the composition of a projection along null geodesics and

a cut-off. Here is also involved the calculation of the component φ̂1 on Σt, so that P
±
χ (t)φ̂±

I

can satisfy the constraints.
Note also that the adjoint of P±

K is just as simple as in the Dirac case. The action of(
P±

K

)∗
on a Maxwell field φAB|Σt

∈ L2
Maxwell(Σt), t > 0 (resp. t < 0), is, first, to multiply

it by χ, second to keep only its component (χφ2)|Σt
(resp. (χφ0)|Σt

), and finally to project
this component on I ± along the congruence C ±. It is therefore just as trivial as in the
Dirac case to see that W̃± = T±. The rest of the proof is essentially analogous to the
proof in the Dirac case and we omit it.

A Estimates from characteristic data on I

In order to prove these, we will use special features of I . In particular, these estimates will
not be true in such a simple form in the context of a characteristic initial value problem
from a finite light cone (although analogues will, of course, exist). We first obtain an
explicit representation of the metric in a neighbourhood of I + and i+.

We deal with three regions separately, a neighbourhood U+ of i+, a neighbourhood of
U0 of i0 on which the space-time agrees with the Kerr solution, and a neighbourhood U of
I + which covers the rest of I + but is bounded away from i0 and i+. On U0 the strategy
is to use the (exact) energy estimate using the time-like Killing vector. On U and U+ we
use an approximate Killing vector that generalises the dilation from Minkowski space.
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A.1 The U 0 region

We simply evolve the hypersurface Σ0 in this region leaving it fixed elsewhere ; we obtain
a surface Σ̂0 very much like that of figure 4, such that the part that differs from Σ0 lies
entirely in the U0 region. The time-like Killing vector Ka of the Kerr solution leads to
exactly conserved quantities KaTab, ∇b(KaTab) = 0. Thus, the divergence theorem can
be applied in the unphysical space-time in which I is a finite surface to give that

∫

Σ0

KaTab
∗dxb =

∫

Σ̂0

KaTab
∗dxb +

∫

Î
+

0

KaTab
∗dxb (24)

where I
+
0 is the part of I + to the past of the hypersurface Σ̂0.

This is sufficient to move on to the next step in the case of the Maxwell equations
(recall that the Dirac case is straightforward because of the exactly conserved quantity
on the rescaled space-time) because the energy integrands are conformally invariant and
the formulae in the unphysical space-time are equal to their counterparts in the physical
space-time.

Remark A.1. In order that there be no flux at i0, we work with compactly supported
data ; for these, the solutions are bounded away from i0 ; then we extend the equality (24)
by density to finite energy data on Σ0.

However, we need to do a bit more work in the case of the wave equation because in
that case, the standard positive definite stress-energy tensor is not conformally invariant :
firstly the energy in the unphysical space-time will not be equal to that in the physical
space-time, and furthermore, it will not be exactly conserved unless the scalar curvature
vanishes in the unphysical space-time. The latter point is easy to remedy if we choose our
conformal scale for the unphysical space-time by first choosing an appropriate solution to
the conformally invariant wave equation, and rescaling in such a way that this solution is
reduced to 1. Such a conformal scale is guaranteed to have vanishing scalar curvature by
virtue of the fact that ‘1’ is a solution to the conformally invariant wave equation implying
that (2 +R/6)1 = R/6 = 0. In the Kerr solution, an appropriate choice is

φ =
1

r− − r+
log(1 − r+ − r−

r − r−
) , r± = m±

√
m2 − a2

which behaves like 1/r as r → ∞. Restricting to Scharzschild for simplicity, we see that
the unphysical metric becomes

d̂s
2

=
log(1 − 2mR)

R2

2

(R2(1 − 2mR)du2 + 2dudR + dσ2) ,

where R = 1/r, u = t−r−2m log(r−2m), and dσ2 denotes the round unit sphere metric.
The Killing vector K = ∂/∂t becomes the Killing vector K = ∂/∂u in the unphysical
space-time and so KaTab is conserved in the unphysical space-time. The hypersurface
Σ0 is u = −1/R − 2m log(r − 2m) and Σ̂0 can be taken to agree with Σ0 for R > R0

but for R < R0, we can take u = α(R − R0) − 1/R0 − log(R0 − 2m) for some α with
0 < α < (1 + 2mR0)/R

2
0.
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We note that, although this rescaling brings I into a finite coordinate range into the
future, i0 is still at u = −∞. This does not lead to any problems of leakage of flux in
equation (24) on account of remark A.1.

The distinction in the wave equation case from Maxwell and Dirac is that the norm
that is preserved is not the original energy norm from the physical space-time.

A.2 the U+ region

The strategy here is to examine in detail the proof of the standard energy estimate near
I . We will use a foliation that, near I , is given by Ω = constant where Ω is the conformal
factor relating the physical metric g to the unphysical one ĝ = Ω2g. In the standard proof
of the energy estimate, one uses Gronwall’s inequality starting with

∂

∂s

∫

Ω=s

KaTab∇̂bΩdVols =

∫
(∇̂aKb)TabdVols

where dVols is defined by ∗dxa = ∇aΩdVols on Ω = s. Gronwall’s inequality can be
invoked if we know that

(∇̂aKb)Tab ≤ cKaTab∇bΩ (25)

for some uniform constant c. Although ∇̂(aKb) clearly remains bounded, the difficulty we
have is that as Ω → 0, ∇̂aΩ will become null, and so the right hand side of (25) no longer
controls all the components of Tab. Indeed, we will wish to take for Ka a vector field that
also becomes null on I (in fact we will take Ka = ∇̂aΩ) in order to get a bound involving
only the characteristic data and this makes our task harder. The proof of (25) relies on
special properties of the geometry of I , and will not be true for a generic lightcone.

The space-times in question are smooth at I + and i+ and in particular have the
property that the Weyl tensor vanishes on I + and at i+.

Lemma A.1. There exists a conformal scale near i+ so that the Ricci curvature R̂ab

vanishes at i+ and on I R̂ = 0 = naR̂ab.

Proof: First we choose a conformal scale that brings i+ to a finite point. The operator

Labω = (∇A(A′∇B′)B +
1

2
RA(A′B′)B)0ω

is conformally invariant when ω is taken to have weight 1. We obtain ω on I + by
setting ω(i+) = 1 and solving the conformally invariant second order ordinary differential
equation nanbLabΩ = 0 up the generators of I +. There is a freedom in choice of the
first derivative of ω at i+ that will be useful to us later. We can then, as a power series,
extend this scale off I by using 1/ω thus obtained, as characteristic data for a solution
to the conformally invariant wave equation near i+ (this can be done at least at the level
of formal power series, [35], and extended as a smooth function to a full neighbourhood
of i+ in such a way that the equations hold to all orders at I +). If we now choose the
conformal scale in which ω = 1, we have that nanbR̂ab = 0 = R along I +. In particular,
in this conformal scale, the full Ricci curvature vanishes at i+, and R̂ and R̂abn

anb vanish
along I +.

21



The Bianchi identities now give, using the vanishing of the Weyl Curvature along I

together with R̂abn
anb = 0 = R, the equations DΦ̂21 − 2ρ̄′ = 0 from the primed version

of equ 4.12.36 of [36]. Since Φ21 vanishes at i+, this implies that it vanishes along I .
Similarly Φ11 can be seen to vanish on I using the primed versions of equations 4.12.37
and 4.12.40 of [36]. These together imply that R̂abn

a = 0.

We will use, for the approximate conformal Killing vector, Ka = ∇̂aΩ near I , where
Ω is the conformal factor relating the physical metric to the one derived above. This has
conformal Killing form ∇A(A′∇B′)BΩ. We have, from the conformal rescaling properties
of the trace free part of the Ricci tensor Φab

Φab = Φ̂ab + Ω−1∇A(A′∇B′)BΩ .

We assume that Φab = O(Ω2) (as will be the case, for example, for Einstein-Maxwell
fields), then this implies that the conformal Killing form of Ka is

∇̂A(A′∇̂B′)BΩ = ΩΦ̂ab +O(Ω2) . (26)

Introduce Gaussian normal coordinates xa for this metric taken from the exponential
map from linear coordinates on the tangent space at i+. We find that, firstly I is given
by xaxbηab = 0 where ηab is the flat metric on the tangent space at i+ (this follows since
the null vectors will necessarily map onto I ). Furthermore, the vanishing of the Weyl
tensor and R̂abn

a and R̂ on I implies that ncndRacbd = 0 on I and so the geodesic
deviation equations implies that a parallel propagated frame from i+ down I + is also
Lie derived. Thus, in these coordinates, the metric at I agrees with the flat one (the
parallel propagated frame from i+ up the generators of I + is also Lie derived up I + and
so agrees with the coordinate frame). We can therefore write

d̂s
2

= ηabdx
adxb + ηcdx

cxdh

where h is a smooth rank-2 symmetric tensor near I . In these coordinates we have
Ω = xaxbηab + O((xaxbηab)

3) as can be seen by comparing (26) to the expression for the

lie derivative of d̂s
2

along ∇̂aΩ.
We introduce coordinates (t, r, θ) related to the coordinates xa in the standard way

with θ being coordinates on the unit sphere and r and t being the usual radial and timelike
coordinates. I + is then given by t = −r and n̂a∂a = (∂t − ∂r)/

√
2 is tangent to I + and

l̂a∂a = (∂t + ∂r)/
√

2 is transverse to I +. We can write

√
2xa = (t− r)l̂a + (t+ r)n̂a .

We can choose a spin frame so that l̂a = ôA ¯̂oA′

and n̂a = ι̂A¯̂ιA
′

.

A.3 The Maxwell case

For Maxwell fields, Tab = φABφA′B′ . We wish to see that

(∇̂a∇̂bΩ)Tab = ΩΦabTab ≤ c∇̂aΩ∇̂bΩTab (27)
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uniformly on U+. We note, first of all, that Φab(i+) = 0 and that xaΦab = 0 on I +.
This in particular implies that, since Φab is smooth at i+, Φab actually vanishes to second
order: Φab = xcxdΦ+

acbd where Φ+
abcd has the symmetries and trace properties of a Weyl

tensor. We can therefore write Φab = (t− r)2Φ+
ab for some bounded Φ+

ab.
Then we have that in terms of the spin frame above

Tab∇̂aΩ∇̂bΩ = (t− r)2|φ11|2 + (t2 − r2)|φ01|2 + (t+ r)2|φ00|2

whereas, writing Φ+ab = Φ+
00n

anb + ℜ(Φ+
01n

(amb) + Φ+
02m

amb) we see that

ΩΦabTab = (t+ r)(t− r)3
(
Φ+

00|φ11|2 + ℜ(Φ+
01φ11φ̄01 + Φ+

02φ00φ̄11)
)

+O((t2 − r2)2)

It is clear from these formulae that (27) holds, firstly near i+, because the left hand side
vanishes to 4th order whereas the right hand side only to second order, and secondly, near
I + because (t+ r)φ00 and

√
t+ rφ01 are controlled by the right hand side, and the terms

that appear on the left hand side are clearly bounded by these.

B Proof of the main theorems

We do the constructions for I +, the case of I − can be treated analogously.

B.1 Proof of theorem 1

The Dirac/Weyl equation (6) admits a conserved current in any globally hyperbolic space-
time, given by

V a = φAφ̄A′

, ∇aV
a = 0 ,

the conservation following directly from the field equation. In particular, this gives rise
to a closed 3-form ω = ∗Vadx

a and the conformal rescaling weights of φA together with
that of the ∗-operator on 3-forms means that this 3-form is the same on the rescaled
space-time :

ω = ω̂ = ∗V̂adx
a , V̂ a = φ̂A ¯̂

φA′

. (28)

On restriction to a space-like hypersurface Σ, the indexed 3-form ∗dxa is proportional to
the unit normal T a to Σ, and we can set ∗dxa = T adVolΣ and this defines the volume form
dVolΣ for Σ. However, on restriction to I , we will still have ∗dxa = nadVolI for some
choice of normal na to I and 3-form dVolI on I but there is no invariant normalization
for na and hence neither also for dVolI . However, the product ∗dxa = nadVolI is
invariant. The quantities na and dVolI can be understood more abstractly as spin-
weighted quantities : tensors with values in certain line-bundles. In the spin coefficent
formalism, one assumes that one has chosen a spinor dyad (oA, ιA), but only up to scale.
On I we can choose ιA up to scale by requiring that ιAῑA

′

= na be normal to I . Under
ιA → λιA, we will have na → λλ̄na and dVolI → λ−1λ̄−1dVolI and we say that na has
weight (1; 1) and dVolI has weight (−1;−1) (more generally quantities might also have
weights under rescaling of oA but that will not be needed here). A quantity has weight
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(−1; 0) can also be taken to mean that it takes values in the line-subbundle of the spin-
bundle spanned by ιA and this line bundle together with its complex conjugate generate
the appropriate line bundles for spin-weighted quantities.

The null data on I for the Dirac field is φ̂1 = φ̂Aι
A and has spin-weight (1; 0) where

φ̂A is the rescaled Dirac field in the unphysical space-time and n̂a = ιAῑA
′

also in the
unphysical space-time (on I +). The 3-form above then becomes

ω = |φ̂1|2dVolI

and it can be seen that this is invariant both under conformal rescalings and rescalings
of ιA.

The 3-form (28) is closed provided the solution φ̂A is regular enough to allow differenti-

ation. Essentially, φ̂A ∈ H1(M̂ ; S
A) is enough. This is the case of solutions φ̂A ∈ C∞(M̂ )

associated with smooth, compactly supported initial data on Σ0. Since the support of
such solutions remains away from i0, we can use Stokes’ theorem on the hypersurface
constituted of Σ0 and I + to obtain

∫

Σ0

1√
2
T̂ aV̂ad̂VolΣ0

=

∫

I +

n̂aV̂adVolI + ,

i.e.

∥∥∥φ̂
∥∥∥

2

L2(Σ0 ; ddVol)
=

∫

I +

∣∣∣φ̂1

∣∣∣
2

dVolI + . (29)

This gives us estimates (13) and (14) for Dirac fields. In addition we recover that the
characteristic data on I + is φ̂1 = ι̂Aφ̂A. A similar construction at past null infinity would
reveal the null data there to be φ̂0 = ôAφ̂A, since the normal (and tangent) vector field to
I − is la = oAōA′

.
We now suppose that we are given some null data φ̂+

I
∈ C∞

0 (I +).5 Appendix C.2
gives us the third step of the construction and concludes the proof of theorem 1.

B.2 Proof of theorem 3

The existence of W̃+ is straightforward. We consider φ̂A

∣∣∣
Σ0

∈ C∞
0 (Σ0), then by smoothness

on M̂ of the associated solution φ̂A, the spinor field

(
P

+
χ (t)

)∗ U(t, 0)

(
φ̂A

∣∣∣
Σ0

)

5We need also to impose the condition that it arises from a spinor field that is smooth at i+. Thus

there exists a smooth ψA on M̂ supported away from i0 such that φ̂+

I
= ψAι̂

A = ψ1. A priori, there is
considerable freedom in the choice of such a ψA: we can add on any smooth spinor field whose restriction
to I + is a multiple of ιA. The construction of appendix C.2 shows in fact that we have no freedom at
all in the trace of ψA on I + ; it is completely determined by the constraint equation on I + and the
requirement that the support of ψA should remain away from i+ (needed for technical reasons because
our choice of spin-frame (ôA, ι̂A) is singular at i+).
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converges pointwise on I + to T+

(
φ̂A

∣∣∣
Σ0

)
. The convergence in L2(I +) for such data is

a direct consequence of Lebesgue’s dominated convergence theorem. Since W̃+ and T+

coincide on a dense subset, they coincide on all of L2(Σ0) and the convergence in L2(I +)
likewise remains true for all L2 data by density. Besides, W̃+ is clearly independent of
the choices of K large enough and the function χ for smooth compactly supported data ;
this remains true for all L2 data by density. The existence of W± and the fact that
W̃± = (W±)

−1
is proved by our resolution of the Goursat problem. More precisely, let

φ̂+
I

∈ C∞
0 (I +) considered as a spinor field element of L2(I +). Since φ̂+

I
is supported

away from i+, P
+
χ (t)φ+

I
will coincide on all Σt (for t large enough) with the projection on

Σt along C + of φ̂+
I

. It follows from definition C.3 and proposition C.1 that U(0, t)P+
χ (t)φ̂+

I

converges in L2(Σ0) and that the image under T+ of the limit is φ̂+
I

. By density, W+ is
therefore well-defined as the strong limit (22) in L2(Σ0) and is a right-inverse of T+ = W̃+.

The trace operator T+ being an isomorphism, we conclude W+ =
(
W̃+

)−1

= (T+)
−1

.

Finally W̃+ = (W+)
∗

is trivial.

C Finding a solution to the Goursat problem

We treat the Goursat problem on I + ; the case of I − is dealt with similarly.
On I +, we consider a null data φ̂+

I
∈ C∞

0 (I +) and we look for a solution of each

equation that has finite energy on Σ0, such that the image of the data on Σ0 by T+ is φ̂+
I

.

There are two steps in this construction. The first is to find a solution in the future M̂ +
ε

of a hypersurface Hε (where 0 < ε << 1 is chosen so that the boundary of Hε is in the
past of the support of φ̂+

I
) such that the trace of its relevent component on I + is φ̂+

I
.

The second is, by means of energy estimates, to show that this solution can be extended

uniquely to M̂ and that the extension has finite energy on Σ0.
The first step is exactly finding a solution to the Goursat problem on a finite light-cone

(that of i+) on the rescaled space-time. For a generic wave equation

�ĝφ̂+ 〈a, ∇̂〉φ̂+ bφ̂ = 0 , (30)

where a is a smooth vector field on M̂ and b a smooth scalar field, two methods are well
known. One is due to Hörmander [26] and uses energy estimates, weak convergence and
compactness. The other is due to Friedlander [19] ; it is based on the works of Hadamard
and Leray and gives an integral representation of the solution. Both can be easily adapted
to the Dirac case, although some care is needed. The Maxwell case is more subtle. We
describe the first approach briefly in the case of equation (30), then we explain how it is
used for Dirac and Maxwell. The second approach will be the subject of a subsequent
paper.

C.1 The wave equation

We modify very slightly Hörmander’s technique : instead of slowing down the propagation
speed so that I + becomes spacelike, we approach I + by spacelike hypersurfaces without
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changing the equation. This proves extremely useful in the reformulation of our confor-
mal scattering theory in terms of wave operators. The obvious choice for the spacelike
hypersurfaces approaching I + is the foliation {Σt}t.

Next, we choose in M̂ + (denoting the future of Σ0 in M̂ ) a congruence C of timelike
or weakly timelike lines, to allow us to project the null data on I + as regular initial data
on Σt for any t ≥ 0. There are two natural choices :

Figure 6: Timelike congruence normal to the
foliation {Hτ}τ .

Figure 7: A weakly timelike congru-
ence, coinciding with a congruence
of outgoing null geodesics outside a
compact in space.

1. The integral curves of the normal vector to the foliation {Hτ}τ (see figure 6).

2. Given K a large enough compact subset of Σ, we can choose, in [0,+∞[t×(Σ \K),
a congruence of outgoing null geodesics defining I + (i.e. such that each part of
I + is met by one and only one of these lines). Then, these lines can be extended
smoothly inside [0,+∞[t×K as a timelike congruence (see figure 7).

Either choice is good and so would be any congruence of smooth timelike curves on M̂ .
The second choice will be excessively useful for the reformulation of conformal scattering
in terms of wave operators, so we adopt it.

Definition C.1. We denote by P+
K (t) the operator that, to φ̂+

I
associates the initial data

for (30) defined as follows :

• φ̂
∣∣∣
Σt

is the projection of φ̂+
I

on Σt along the congruence C ;

• ∂T φ̂
∣∣∣
Σt

= 0 .
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We denote by tφ̂ the solution of (30) on M̂ + associated with the data P+
K (t)φ̂+

I
on Σt.

The energy estimates established in [26] prove that tφ̂ is uniformly bounded6 with

respect to t in H1(M̂ +
ε ; ĝ), the natural Sobolev space on M̂ +

ε associated with the metric

ĝ. Hence, we can extract a sequence { tnφ̂}n that converges weakly in H1(M̂ +
ε ; ĝ) and

hence strongly, by the Rellich theorem, inH1−s(M̂ +
ε ; ĝ) for any s > 0. The limit, denoted

φ̂, belongs to H1(M̂ +
ε ; ĝ) and still satisfies equation (30). Moreover, by standard trace

theorems, weak convergence in H1 entails strong convergence on any hypersurface of a
given Lipschitz foliation, with continuous dependence of the parameter of the leaves. We
conclude that the trace of φ̂ on I + is equal to φ̂+

I
.

Remark C.1. Note that this method does not guarantee the smoothness of the solution

unless we use estimates in Hk(M̂ +
ε ; ĝ) for all k ∈ N. For such estimates, some care must

be taken in the choice of ∂T φ̂
∣∣∣
Σt

(this is similar to the phenomenon that we encounter in

the definition of the data on Σt approaching φ̂+
I

for Dirac or Maxwell ; see below).

Remark C.2. In the case of the wave equation, although the Goursat problem can be
solved, the second step of the construction (uniform estimate from Hε to Σ0) runs into
difficulties for exactly the same reasons as the estimates from characteristic data on I +

in appendix A.

C.2 Dirac’s equation

In these last two sections, we shall use spin-frames (oA, ιA) and (ôA, ι̂A) as introduced in
definition 2.2. The fact that they are only defined outside a fixed compact in space is not
a problem here, since we only use explicit projections onto the spin-frames when working
with data that are zero in a given compact set (as the projections onto hypersurfaces Σt

along C of fields on I + that are zero near i+). More precisely, we consider a neighbour-
hood O∞ of i+ on I + (slightly smaller than the region in which φ̂+

I
is assumed to vanish)

and we define a region O on M̂ as the set of points whose projection on I + along the
congruence C lies inside O∞. The intersection of O with a hypersurface Σt will be de-
noted Ot. We shall simply assume that the spin-frame (oA, ιA) is defined globally outside
O (modulo the topological problem on the 2-sphere that is solved using two patches and
that is irrelevant here).

The definition of P+
K (t) is more subtle in this case. We look for a way of defining

initial data tφ̂A

∣∣∣
Σt

that allows us to follow the same strategy as for the wave equation.

When trying to use this scheme, some retrictions naturally appear for the choice of data.

Let us assume that we have defined tφ̂A

∣∣∣
Σt

, we denote by tφ̂A the associated solution

of (16) in M . A first natural constraint is that tφ̂1

∣∣∣
Σt

converges to φ̂+
I

as t → +∞, so

as to guarantee that the second component of the solution we construct has the right

6The fact that we remain away from the singularity of ĝ at i0 by working on M̂ +
ε is crucial here ; the

uniform boundedness in H1(M̂ + ; ĝ) could not be obtained as a consequence of [26].
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trace on I +. Now, in order to be able to construct this solution, we need to control the

family of solutions tφ̂ uniformly in H1 on M̂ +
ε . For tφ̂ to be bounded uniformly in t on

L2(M̂ +
ε ; ĝ), thanks to the conserved current, we simply need to assume that

∃C > 0 ; ∀t ≥ 0 ,

∥∥∥∥ tφ̂
∣∣∣
Σt

∥∥∥∥
L2( 
M+

ε ; ĝ)

≤ C .

Let us now see what further constraints a uniform H1 control on M̂ +
ε entails.

In the following, we use Dirac 4-component spinors, and denote by φ or φ̂ the chiral
4-component spinors corresponding to the 2-component spinors φA and φ̂A resppectively.

Using the parallelizability of M̂ , we choose a global section {êaa}a=0,1,2,3 of the principal

bundle of orthonormal frames, such that ê0
a = 1√

2
T̂ a. The rescaled equation (16) then

takes the form
3∑

a=0

êa.∇̂a tφ̂ = 0 , (31)

where “.” denotes the Clifford product and

∇̂a = ∇̂êa = êa
a ∇̂a .

Each covariant derivative ∇̂a tφ̂ satisfies an equation similar to (31), but with a right-hand
side :

3∑

a=0

êa.∇̂a

(
∇̂b tφ̂

)
= −

3∑

a=0

{(
∇̂bêa

)
.∇̂a tφ̂+ êa.

[
∇̂b, ∇̂a

]
tφ̂
}
, b = 0, ..., 3 . (32)

Hence, an H1 control over tφ̂ will be obtained as a consequence of the natural L2 control
given on each unknown by the five coupled Dirac equations (31)-(32). This L2 control
will be uniform in t provided the L2 norm of the restriction to Σt of each of the functions

tφ̂, ∇̂a tφ̂, a = 0, 1, 2, 3, is bounded uniformly in t. A useful thing to do at this stage is
to decompose equation (31) on Σt in terms of ∇̂0 and derivatives that are tangent to Σt.
In order to express these tangential derivatives, we define the family of smooth functions
{ft}t on Σ as the restriction to Σt of τ projected back to Σ0 along the integral curves
of T̂ a : i.e., for each x ∈ Σ, ft(x) is the only τ ∈ R such that (τ, x) ∈ Σt (using the

product structure on M̂ induced by the time function τ and the integral lines of T̂ a).
The tangential derivatives of tφ̂ on Σt then take the form :

[(
∇̂α + ∇̂αft(x)∇̂0

)
tφ̂
]
(ft(x), x) , α = 1, 2, 3.

In order to control all the directional covariant derivatives, it is sufficient to control the
tangential ones and ∇̂0 tφ̂, since the functions ft are Lipschitz on Σ uniformly in t. The
∇̂0 time derivative of tφ̂ on Σt can be expressed in terms of its tangential derivatives,
re-writing the restriction of Dirac’s equation to Σt as follows :

[(
ê0 −

3∑

α=1

∇̂αft(x)êα

)
.∇̂0 tφ̂

]
(ft(x), x)

= −
[

3∑

α=1

êα.
(
∇̂α + ∇̂αft(x)∇̂0

)
tφ̂

]
(ft(x), x) .
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Clifford multiplying by the vector

ê0 −
3∑

α=1

∇̂αft(x)êα , (33)

that is normal to Σt, we obtain
(

1 −
3∑

α=1

|∇αft(x)|2
)
∇̂0 tφ̂(ft(x), x)

= −
(
ê0 −

3∑

α=1

∇̂αft(x)êα

)
.

[
3∑

β=1

êβ.
(
∇̂β + ∇̂βft(x)∇̂0

)
tφ̂

]
(ft(x), x) .

Therefore, in order to guarantee that the L2 norm on Σt of ∇̂0 tφ̂A is bounded uniformly
in t, the L2(Σt ; ĝ) norm of

(
ê0 −

3∑

α=1

∇̂αft(x)êα

)
.

[
3∑

β=1

êβ.
(
∇̂β + ∇̂βft(x)∇̂0

)
tφ̂

]
(ft(x), x) (34)

must tend to zero as t→ +∞ at least as fast as 1 −∑3
α=1 |∇αft(x)|2.

The quantity (34) involves only tangential derivatives of tφ̂ and is therefore quite

easy to control in our choice of tφ̂A

∣∣∣
Σt

. In particular, if tφ̂ is the restriction of the same

solution of the Dirac equation (i.e., is independent of t) the convergence will be trivially
guaranteed. On I + (i.e. as t → +∞), (34) reduces to the constraint equation (see
remark 3.1) and if this is not satisfied, it will be an obstruction to uniform control in H1.

We are now in position to specify a good choice of tφ̂A

∣∣∣
Σt

.

Definition C.2. Starting from the null datum φ̂1|I + = φ̂+
I

, we can integrate the con-

straint equation to first obtain φ̂0|I + to obtain a spinor field φ̂A on I +. We can then
integrate the full Dirac field equations component by component and order by order to
obtain as many terms in the Taylor series as we desire for the solution with given null
datum. This is a question of integrating coupled ODE’s up the generators of I , see, for
example, Penrose [35] for details. We note that in the term by term integration we need to
use the fact that φ̂A should vanish in some small neighbourhood of i+ to fix the constants

of integration. The resulting spinor field φ̂A

∣∣∣
I +

is in C∞(I +) in such a way that its

support remains away from i+.
We can choose tφ̂A to be a smooth extension of the given φ̂+

I + on I + that agrees with
the associated Taylor series to arbitrary order (although agreement to 2nd order will be
sufficient for control in H1).

With this tφ̂A

∣∣∣
Σt

, the quantity (34) can be made to converge as fast as we like in

L2(Σt) as t→ +∞. Indeed, we have

1 −
3∑

α=1

∣∣∣∇̂αft

∣∣∣
2

=

∥∥∥∥∥ê0 −
3∑

α=1

∇̂αft(x)êα

∥∥∥∥∥
ĝ

. (35)
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The rate at which this quantity tends to zero as t → +∞ measures the speed at which
the hypersersurfaces Σt approach I + with respect to the metric ĝ. We note that for the
chosen foliation by t =constant surfaces, this will actually vanish to second order in 1/t
at I since Ω is of the same order as 1/t near I and gab∇at∇bt = O(1) implies that
ĝab∇a(1/t)∇b(1/t) = O(Ω2). Now, the convergence of (34) towards

(
ê0 −

3∑

α=1

∇̂αf∞(x)êα

)[
3∑

β=1

êβ.
(
∇̂β + ∇̂βf∞(x)∇̂0

)]
tφ̂
∣∣∣
I +

= 0 ,

where f∞ is the function defining I + in the same way as ft defines Σt, is controlled
by the speed at which the tangent vector fields êα + ∇̂αft(x)ê0, and the normal vector
field (33), on Σt, approach their trace on I +, which in turn is controlled by (35). This

therefore guarantees a uniform H1 control for the family tφ̂A on M̂ +
ε and the rest of the

construction follows the same steps as for the wave equation.

Remark C.3. Note that we have been forced into imposing that the trace of the solution on
I + satisfies the constraints on I +, and not merely that the trace of the first component
of the solution is equal to φ̂+

I
.

The choice of data given by definition C.2 has been made for the sole purpose of gaining
a uniform H1 control in order to be able to use compactness arguments for guaranteeing
the existence of a trace. Once this is obtained, we can in fact simplify the data on Σt to
construct another family of solutions. This new family will not be bounded in H1 but its
restrictions to Σε will nevertheless converge in L2 towards the same data, whose image
under T+ is precisely φ̂+

I
. We define this new family, and the operator P+

K (t), as follows :

Definition C.3. For each t > 0, we define P+
K (t) as the operator that to φ̂+

I
associates

the spinor field tψ̂A

∣∣∣
Σt

on Σt, whose component tψ̂0

∣∣∣
Σt

is identically zero and such that

tψ̂1

∣∣∣
Σt

is the projection of φ̂+
I

on Σt along C . We denote by tψ̂A the associated solution

of (16).

Proposition C.1. The families tφ̂A and tψ̂A, defined using definitions C.2 and C.3

respectively, converge in L2(Hε ; ĝ) and in L2(M̂ +
ε ; ĝ) towards the same limit.

Proof. The L2 norm on Σt of tφ̂A − tψ̂A tends to zero as t → +∞ because the
normal vector to Σt approaches na and the contribution of the first component to the
norm decreases to zero (the second components of tφ̂A and tψ̂A coincide on Σt, while
the first components differ but their difference is uniformly bounded). The proposition is
then a direct consequence of the charge conservation for (16).

For the last step of the construction, we need the following result :

Lemma C.1. Given a spinor field εφ̂A ∈ L2(Hε ; ĝ), there exists a unique solution φ̂A,

continuous in τ with values in L2(Hτ ; ĝ), such that φ̂A

∣∣∣
Hε

= εφ̂A. Moreover, there exists

C > 0 independent of εφ̂A such that
∥∥∥∥ φ̂A

∣∣∣
Σ0

∥∥∥∥
L2(Σ0 ; ĝ)

≤ C
∥∥∥ εφ̂A

∥∥∥
L2(Hε ; ĝ)

.

30



Proof. This is a direct consequence of the charge conservation for Dirac’s equation
and the density of C∞

0 (Hε) (denoting smooth spinor fields on Hε whose support remains
away from I +) in L2(Hε ; ĝ).

Finally we conclude, using proposition C.1 and lemma C.1 :

Proposition C.2. The family tψ̂A converges in L2(Σ0 ; ĝ) and in L2(M̂ ) towards a
solution φ̂A of equation (16). This solution is continuous in τ with values in L2(Hτ ; ĝ)
(also continuous in t with values in L2(Σt ; ĝ)) and it satisfies

T
+

(
φ̂A

∣∣∣
Σ0

)
= φ̂+

I
.

C.3 Maxwell’s equations

We consider on I + a complete spinor field φ̂AB

∣∣∣
I +

= φ̂(AB)

∣∣∣
I +

, such that

• φ̂2

∣∣∣
I +

= φ̂+
I

,

• φ̂0

∣∣∣
I +

and φ̂1

∣∣∣
I +

are the solutions of the constraints on I +, determined by φ̂2

∣∣∣
I +

and the requirement that tφ̂AB

∣∣∣
I +

vanishes in a neighbourhood of i+.

The main difference between Dirac’s and Maxwell’s equations is that Maxwell’s equations
are overdetermined, whence the presence of constraints on spacelike hypersurfaces. These
constraints need to be taken into accound in the definition of the data on Σt approaching
the data on I +. We describe how the construction proposed for the Dirac case can be
modified. Once these modifications are made, the proof can be done in the same manner
and we omit it.

The Maxwell system on the physical space-time, decomposed on the spin-frame is
written as

ma∇B
A′φAB = na∇aφ0 −ma∇aφ1 + (µ− 2γ)φ0 + 2τφ1 − σφ2 = 0 , (36)

na∇B
A′φAB = na∇aφ1 −ma∇aφ2 − νφ0 + 2µφ1 + (τ − 2β)φ2 = 0 , (37)

−la∇B
A′φAB = la∇aφ̂1 − m̄a∇aφ0 − (π − 2α)φ0 − 2ρφ1 + κφ2 = 0 , (38)

−m̄a∇B
A′φAB = la∇aφ2 − m̄a∇aφ1 + λφ0 − 2πφ1 − (ρ− 2ε)φ2 = 0 , (39)

where the spin-coefficients are those of the physical space-time, defined using the spin-
frame (oA, ιA). The constraint equation T a∇B

A′φAB = 0 is therefore

D · φ := (la − na)∇aφ1 + ma∇aφ2 − m̄a∇aφ0 + (ν + 2α− π)φ0

− 2 (ρ+ µ)φ1 + (κ+ 2β − τ)φ2 = 0 . (40)

We could be tempted to define the data on Σt by projecting φ̂AB

∣∣∣
I +

onto Σt along

the congruence C . However, the data thus obtained would not satisfy the constraints on

Σt. Instead, we define tφ̂AB

∣∣∣
Σt

as follows :
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We first choose a smooth extension of the (perhaps truncated) Taylor series solution
to the Maxwell equations with the given null datum on I +, and then project it onto
the solution of the constraint equations. This projection is implemented by means of a
projection operator P = 1 − D

∗(DD
∗)−1

D which is a bounded operator, see [30]. Being a
bounded operator, the convergence in H1 is preserved by this construction.

This construction provides data on Σt that approach the full spinor field φ̂AB

∣∣∣
I +

on

I + and guarantee a uniform H1 control of the associated solutions tφ̂ on M̂ +
ε . The

uniform L2 estimate between Hε and Σ0 is then obtained using the constructions of
appendix A near i0.

Similarly to the Dirac case, once a first construction of a solution to the Goursat
problem has been obtained, it can be simplified by dropping the requirement of a uniform
H1 control. The new family of solutions will converge in L2 (and no longer weakly in H1)
towards the same solution. This simplified definition of data on Σt is once again the one
adopted for the construction of wave operators.

Definition C.4. For each t > 0, the operator P+
K (t) is defined as associating to φ̂+

I
the

Maxwell field tφ̂AB

∣∣∣
Σt

on Σt such that : tφ̂0

∣∣∣
Σt

is identically zero, tφ̂2

∣∣∣
Σt

is the projection

of φ̂+
I

on Σt along C and tφ̂1

∣∣∣
Σt

is determined as the solution of (40) that vanishes inside

O+. The operator P−
K (t) is defined in a symmetrical manner in the past.
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