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Abstract

This work is devoted to the study of Dirac fields and of their evolution on globally
hyperbolic asymptotically flat space-times by means of 3 + 1 decomposition techniques.
The principles of the 3 + 1 decomposition are explained and used to define classes of
space-times for which the regularity and fall-off at infinity of the metric are precisely
specified. Dirac’s equation is expressed and its 3 + 1 decomposition is described both
in terms of Dirac spinors and in the framework of the two-spinor formalism. The global
Cauchy problem is then solved on three types of space-times. First, we work on the
classes of space-times defined earlier. For weak regularity and fall-off of the metric, we
solve in Sobolev and weighted Sobolev spaces the Cauchy problem for general symmetric
hyperbolic systems with weakly regular coefficients. We apply these results to Dirac’s
equation. Then, we consider Schwarzschild and Kerr black holes. The geometry of these
space-times is described in details. Depending on the choice of observer field, the general
results above are either applied directly or adapted.

Résumé

Ce travail est consacré à l’étude des champs de Dirac et de leur évolution sur des
espaces-temps globalement hyperboliques asymptotiquement plats à l’aide de techniques
de décomposition 1 + 3. Les principes de la décomposition 1 + 3 sont expliqués et utilisés
pour définir des classes d’espaces-temps pour lesquels la régularité et la décroissance à
l’infini de la métrique sont précisément spécifiées. L’équation de Dirac et sa décomposition
1 + 3 sont exprimées en termes de spineurs de Dirac ainsi que dans le cadre du for-
malisme des 2-spineurs. Le problème de Cauchy global est alors résolu sur trois types
d’espaces-temps. Tout d’abord, nous travaillons sur les classes d’espaces-temps définies
précédemment. Pour des régularités et décroissances faibles de la métrique, nous résolvons
le problème de Cauchy dans des espaces de Sobolev et de Sobolev à poids pour des
systèmes symétriques hyperboliques généraux à coefficients faiblement réguliers. Nous
appliquons ces résultats à l’équation de Dirac. Puis nous considérons les trous noirs de
Schwarzschild et de Kerr. La géométrie de ces espaces-temps est décrite en détails. Selon
le choix du champ d’observateurs, les résultats généraux ci-dessus sont ou bien appliqués
directement ou bien adaptés.
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Chapter 1

Introduction

We solve the global Cauchy problem for the Dirac equation in Sobolev and weighted
Sobolev spaces. This is first done on classes of globally hyperbolic asymptotically flat
space-times with weak regularity and fall-off at infinity. The theorems are proved for
general first order symmetric hyperbolic systems and then applied to Dirac’s equation.
They are also valid for space-times compact in space or admitting several asymptotically
flat ends. Then we consider in some detail the Schwarzschild and Kerr black holes. They
can be described in such a way that the previous theorems are immediately applicable.
We also choose to consider them from the point of view of an observer static at infinity.
The horizon then appears as a boundary for the spacelike geometry. We prove similar
theorems in this situation.

A space-time is a pair (M, g) where M is a four dimensional manifold without bound-
ary and g a Lorentzian metric, i.e. a symmetric two-form on M with signature (+ −−−).
All the space-times we consider are globally hyperbolic. The notion of global hyperbolic-
ity is naturally required for the concept of Cauchy problem to make sense. To be more
precise, let us consider some relativistic field equation (E) on a space-time (M, g) ; the
Cauchy problem can be formulated as follows : prove that if we specify the values of the
field at some initial time t0, then the solution of (E) can be propagated continuously in
time, from these initial data, onto the whole space-time and the field is thus everywhere
uniquely determined by its values at time t0. There are two implicit assumptions in this
formulation : firstly, there exists a time function t globally defined on M, secondly, the
information contained in the hypersurface Σt0 := {t = t0} can be propagated via the field
equation on the whole space-time. Equation (E) being relativistic, this means that any
point of M can be reached from Σt0 along a non-spacelike curve (in fact timelike since
M is assumed to have no boundary). The existence of such a surface, called a Cauchy
hypersurface, is equivalent to global hyperbolicity.

Jean Leray introduced the notion of global hyperbolicity in 1952 (see [41]). In 1970,
Robert Geroch [22] showed that Leray’s definition is equivalent to the existence of a
Cauchy hypersurface. The work of Geroch establishes that a globally hyperbolic space-
time (M, g) has a very precise structure :

• it admits a globally defined time function t,
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6 INTRODUCTION

• the level hypersurfaces Σt of t define a foliation of M, all Σt are spacelike Cauchy
hypersurfaces and are homeomorphic to a given 3-manifold Σ.

Hence (M, g) possesses two orthogonal foliations : {Σt}t and the congruence of the in-
tegral lines of ta, the unit timelike future-oriented vector field normal to the Σt. This
confers to M a product structure M ' Rt × Σ. The metric g and covariant derivative
∇ can also be decomposed into timelike and spacelike parts by projecting them along
the two foliations. Field equations on (M, g) are then naturally expressed as evolution
equations on Rt ×Σ. This is the principle of the 3 + 1 decomposition of a space-time : it
is nothing but the complete use of the structure of globally hyperbolic space-times. This
3 + 1 decomposition is also referred to as the ADM decomposition because of the way
Arnowitt, Deser and Misner formalized and used it to obtain a Hamiltonian formulation
of general relativity (see R. Arnowitt, S. Deser, C.W. Misner [1] for a review of their work,
see also C.W. Misner, K. Thorne, J.A. Wheeler [44] chapter 21).

Another important property of globally hyperbolic space-times is that they admit a
spin structure1. This is a consequence of the product structure M ' Rt × Σ and of the
fact that Σ is 3-dimensional and therefore parallelizable if orientable (see E. Stiefel 1936
[59] and R.P. Geroch 1968 [20] and 1970 [21]). In 1981 and 1982, A. Sen ([56] and [57])
described the 3 + 1 decomposition of spinor field equations on globally hyperbolic space-
times using Penrose’s abstract indices and two-spinor formalism. He applied this technique
to obtain formulations as evolution equations of the neutrino equation, the spinor form of
Maxwell’s equations and the Dirac form of spin 3/2 massless field equations. An important
feature of Sen’s work is the use of the vector field ta : it provides a natural embedding of
the restriction to a hypersurface Σt of the SL(2,C) spin bundle of M into the SU(2) spin
bundle intrinsic to the geometry of Σt. The spin bundle on M thus inherits a hermitian
structure. The quantity conserved by the evolution for a spinor field equation (Dirac and
spin 3/2) is the L2 norm of the solution on Σt induced by this hermitian structure.

The present work is entirely based on such 3 + 1 decomposition techniques. It is
organized in five parts :

Chapter 2. We recall in details the 3 + 1 decomposition of globally hyperbolic space-
times, leaving the purely spinorial aspects until the next chapter. In a recent contri-
bution in collaboration with L.J. Mason [42], we used this decomposition to define
in terms of weighted Sobolev spaces some classes of globally hyperbolic asymptot-
ically flat space-times. We reformulate these definitions using the numbering of
weighted Sobolev spaces proposed by Robert Bartnik [5] which has the advantage
of indicating explicitely the rate of fall-off at spacelike infinity.

Chapter 3. In the litterature, one finds essentially two ways of expressing the Dirac
equation : one in terms of Dirac spinors and Clifford products by the vectors of

1We have chosen to define space-times as four dimensional manifolds endowed with a Lorentzian
metric. One can perfectly well consider a space-time M of dimension n + 1, for any positive integer n,
with a metric of signature (+ − ...−). Although global hyperbolicity will always guarantee the existence
of a product structure M ' Rt ×Σ, it will not in the general case entail the existence of a spin structure.
For example, if Σ is the n-sphere, it is only parallelizable for n = 1, 3 and 7.
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a Lorentz frame (which are interpreted as multiplications by Dirac matrices via a
choice of spin-frame) and the other using the two-spinor formalism and abstract
indices. We describe Dirac’s equation and its 3 + 1 decomposition on globally
hyperbolic space-times using each of the two formalisms. We emphasize as often
as possible the link between the fundamental structures of each framework. In
particular, the expression of Dirac’s equation in the two-spinor formalism, when
translated into the language of Dirac spinors, corresponds to a particular form of
Dirac matrices. We derive their general expression ; for a natural choice of spin-
frame, this gives one of the standard choices for Dirac matrices. After performing
the 3+1 decomposition of the Dirac equation, we show it is a first order symmetric
hyperbolic system on Rt × Σ ; we express its spacelike part in terms of the Dirac
operator on the leaves Σt of the foliation and of the extrinsic curvature of the Σt.
We also express the current vector using two-spinors and Dirac spinors. Proving
that it is divergence-free is particularly simple using the two-spinor formalism.

Chapter 4. On the classes of asymptotically flat space-times defined in chapter 2, we
solve the global Cauchy problem for Dirac fields in Sobolev and weighted Sobolev
spaces. Regular solutions to Dirac’s equation have been studied on curved space-
times by J. Dimock [16] in 1982 and more recently by A. DeVries [14], [15] with
applications to Kerr-Newman metrics. We adopt here a different approach, centred
on minimum regularity : the fundamental result is the existence and uniqueness of
solutions to the Cauchy problem in L2 ; the use of identifying operators or successive
differentiations of the equation then allows us to infer the stability of Sobolev and
weighted Sobolev spaces under the evolution. This type of analytic study of the
Cauchy problem, based on a 3 + 1 decomposition of space-time, is akin to the
techniques used in F. Cagnac and Y. Choquet-Bruhat [6], Y. Choquet-Bruhat [8],
Y. Choquet-Bruhat, D. Christodoulou and M. Francaviglia [10] and subsequent
contributions by Y. Choquet-Bruhat and co-workers. Theorems 1 and 2 establish
the well-posedness of the Cauchy problem in L2 and Sobolev spaces for Ck metrics
satisfying assumptions slightly broader than asymptotic flatness. Theorem 3 deals
with existence and uniqueness of solutions in weighted Sobolev spaces for classes of
asymptotically flat space-times and the conservation of the charge of Dirac fields is
proved in theorem 4. The first three theorems are consequences of much more general
results (propositions 4.1 and 4.2) valid for large families of first order symmetric
hyperbolic systems with weakly regular coefficients. These two propositions extend
the results of [42] in three important ways :

• they authorize to work with less regular metrics : the difference with a metric,
flat outside a compact set in space, is only required to be inH3 on each spacelike
slice ;

• the maximum regularity allowed for the solutions is improved : Hk−1 for a
metric in Hk. In [42], three degrees of regularity were lost between the metric
and the solution. This was due to the use of Sobolev embedding theorems.
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Product theorems between Sobolev spaces enable us to lose only one degree
of regularity. One cannot expect to improve this because of the presence of
connection terms in equations such as Dirac, Maxwell, Rarita-Schwinger or
Bianchi ;

• they establish the well-posedness in weighted Sobolev spaces of the Cauchy
problem for general symmetric hyperbolic systems. This gives us a control on
the behaviour of the solutions at spacelike infinity at each time. As far as we
are aware, no such result can be found in the litterature, not even for smooth
metrics.

The proof of propositions 4.1 and 4.2 relies essentially on the theory of abstract
evolution systems. The research in this domain was initiated by T. Kato in 1953
[30] and some important contributors have since been M. Da Prato and M. Iannelli
[13], T.J.R. Hughes, T. Kato and J.E. Marsden [28], S. Ishii [29], T. Kato [32,
33, 34, 35, 36, 37], T. Kato and H. Tanabe [38], F.J. Massey III [43], N. Okasawa
and A. Unai [49], J. Prüss [54], H. Tanabe [60, 61] and K. Yosida [65] (this list of
references has no claim to being exhaustive, for example we have almost essentially
considered the hyperbolic case ; for a comprehensive list of references in the parabolic
case, see for example D. Daners and P. Koch Medina [12]). We do not need the
latest refinements of this theory, references [32], [33] and [34] are sufficient, together
with adequate choices of identifying operators, to prove the propositions when the
topology of space-time is trivial. We take advantage of the finite propagation speed
to extend the results to non trivial topology.

Chapters 5 and 6. The Schwarzschild and Kerr space-times are asymptotically flat
solutions to the Einstein vacuum equations describing respectively a spherically
symmetric black hole and a rotating black hole. The symmetry of the Schwarzschild
solution allows to adapt to this geometry some standard methods of the analysis of
hyperbolic equations in flat space. In particular, the development of time dependent
scattering theories for linear fields outside a Schwarzschild black hole has formed
the subject of numerous studies : see A. Bachelot [2], [3], A. Bachelot and A. Motet-
Bachelot [4], J. Dimock [17], J. Dimock and B.S. Kay [18] and the author [47] (for
other analytic studies of linear and non linear equations, see also A. Motet-Bachelot
[45] and the author [46], [48]). The geometry of the Kerr solution is more complex
and only one time dependent scattering construction is known to this day (see D.
Häfner [23]). The first step is to choose a way of describing the geometry of the
black hole. This can either be guided by the type of information one wishes to
obtain, or imposed by the analytic techniques one uses. Both are true in the case
of the scattering theories referred to above. The point of view they all adopt is
that of an observer static with respect to infinity. Hence, only the exterior of the
black hole is considered and it is described using Schwarzschild or Boyer-Lindquist
coordinates respectively. The first reason for such a choice lies in the history and
nature of scattering theory : its purpose has always been to study how a distant
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observer perceives the influence of an object on the propagation of fields and to
decide whether the information collected by such observers can be used to describe
the object completely. If experimental measurements of the scattering of fields by
a black hole are to be performed, it must be by good approximations of observers
static at infinity (like gravitational wave detectors on Earth). A second and equally
important reason is the analytic convenience of working with an explicit coordinate
system in which the coefficients of the equations do not depend on time. This time
independence is in fact almost compulsory since time dependent scattering theory
relies heavily on the existence of a unitary propagator on a fixed Hilbert space. We
choose two different ways of describing the geometry of the black hole :

• First we adopt the point of view of an observer static with respect to infinity.
Our purpose is to describe as precisely as possible the implications of such
a choice for the analysis of field equations, more particularly as regards the
functional framework for the Cauchy problem. The exterior of the black hole
is globally hyperbolic and we perform a 3 + 1 decomposition of the geometry
using the time function t of the Schwarzschild or Boyer-Lindquist coordinates
respectively (this decomposition is of course completely trivial in the Schwarz-
schild case but not for the Kerr metric). The horizon then appears as a smooth
boundary for the spacelike slices and the lapse function of the space-time met-
ric vanishes there. Thus, describing the exterior of the black hole by means
of the time function t yields a decomposition of the metric which differs from
the general decomposed form for the classes of asymptotically flat space-times
of chapter 2. This is essentially due to the fact that the Killing vector field ∂

∂t

is not uniformly timelike outside the black hole but becomes null at the hori-
zon. The practical consequence is that the theorems of chapter 4 cannot be
directly applied here. We have to define function spaces on the spacelike slices
which take the boundary into account. A natural choice is to use Sobolev and
weighted Sobolev spaces with zero traces on the horizon ; this corresponds to
the physical property that no field comes out of the black hole. By means of
a precise analysis of the geometry of the slices and of the spacelike part of the
Dirac equation, we extend the theorems of chapter 4 to the exterior of Schwarz-
schild and Kerr black holes. In both cases, the crucial step is to show that the
successive domains of the spacelike Dirac operator are the Sobolev spaces and
that the norms are equivalent. We also verify the well-known property : the
L2 norm of Dirac fields (massive or not) is conserved under the evolution. The
results obtained here concerning the well-posedness of the Cauchy problem for
Dirac fields in Sobolev and weighted Sobolev spaces are new both for Schwarz-
schild and Kerr space-times. Note that the description of the exterior of a
Kerr black hole adopted here, based on the 3 + 1 decomposition of the geome-
try induced by the time function t of the Boyer-Lindquist coordinates, is often
referred to as the point of view of locally non rotating observers (see for exam-
ple C.W. Misner, K. Thorne and J.A. Wheeler [44] or R.M. Wald [63]). It does
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away with the time/space cross terms in the metric and the rotation of space-
time simply appears via the extrinsic curvature of the slices. This gives us a
framework for studying evolution systems which is much more agreable than
Boyer-Lindquist coordinates (recall that we use here only the time coordinate
t of the Boyer-Lindquist coordinate system).

• We adopt a second, more global point of view. It is easy to see, using Kruskal-
Szekeres coordinates or Kerr coordinates respectively, that the horizon of the
black hole is not a singularity of space-time but a regular null hypersurface.
The metric can be extended smoothly accross it and we consider maximal
analytic extensions of Schwarzschild and Kerr space-times. For a natural choice
of foliation, we show that the theorems of chapter 4 can be applied in this
framework.

In a first appendix, we detail some technical aspects of the choice of a spin-frame adapted
to the exterior of Schwarzschild and Kerr black holes described using the time function t.
We also give the calculation of the timelike connection terms appearing in Dirac’s equation
for this choice of spin-frame. A second appendix contains a possible way of expressing the
Dirac equation on the Kerr metric and of writing it in the form of an evolution system.
Although we have chosen in this work to use a more intrinsic form of Dirac’s equation,
we give this analytic formulation for completeness.
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Chapter 2

Geometrical and functional
framework

2.1 Notations

Many of our equations will be expressed using the two-component spinor notations and
abstract index formalism of R. Penrose and W. Rindler [53].

Abstract indices are denoted by light face latin letters, capital for spinor indices and
lower case for tensor indices. Abstract indices are a notational device for keeping track
of the nature of objects in the course of calculations, they do not imply any reference to
a coordinate basis, all expressions and calculations involving them are perfectly intrinsic.
For example, gab will refer to the space-time metric as an intrinsic symmetric tensor field

of valence

[

0
2

]

, i.e. a section of T∗M�T∗M and gab will refer to the inverse metric as

an intrinsic symmetric tensor field of valence

[

2
0

]

, i.e. a section of TM�TM (where �
denotes the symmetric tensor product, TM the tangent bundle to our space-time manifold
M and T∗M its cotangent bundle).

Concrete indices defining components in reference to a basis are represented by bold
face latin letters. Concrete spinor indices, denoted by bold face capital latin letters,
take their values in {0, 1} while concrete tensor indices, denoted by bold face lower case
latin letters, take their values in {0, 1, 2, 3}. Consider for example a basis of TM, that
is a family of four smooth vector fields on M : B = {e0, e1, e2, e3} such that at each
point p of M the four vectors e0(p), e1(p), e2(p), e3(p) are linearly independent, and the
corresponding dual basis of T∗M : B∗ = {e0, e1, e2, e3} such that ea (eb) = δa

b
, δa

b
denoting

the Kronecker symbol ; gab will refer to the components of the metric gab in the basis B :
gab = g(ea, eb) and gab will denote the components of the inverse metric gab in the dual
basis B∗, i.e. the 4 × 4 real symmetric matrices (gab) and

(

gab
)

are the inverse of one
another. In the abstract index formalism, the basis vectors ea, a = 0, 1, 2, 3, are denoted
ea

a or ga
a. In a coordinate basis, the basis vectors ea are coordinate vector fields and will

also be denoted by ∂a or ∂
∂xa ; the dual basis covectors ea are coordinate 1-forms and will

11



12 CHAPTER 2

be denoted by dxa.
Brackets on each side of a group of indices denote symmetrization and square brackets

correspond to skew-symmetrization.
The indexed 1-form dxa ∈ T∗M⊗SA⊗SA′

and the indexed vector ∂a ∈ TM⊗SA⊗SA′

(see below for the meaning of the notations SA, SA′

, SA and SA′) are used to suppress
form and vector indices : dxa maps the 1-form ωa as an indexed quantity to the same
1-form ω = ωadx

a with its index suppressed, ∂a maps the vector field V a to the same
vector field V = V a∂a with its index suppressed.

Most of the function spaces that we use in this work are defined in section 2.3, where
the general classes of asymptotically flat space-times are described. We define here some
other spaces which will be useful to us but whose definition would not fit naturally in
that section :

• given E and F two Banach spaces, L (E,F ) denotes the Banach space of bounded
linear operators from E to F ;

• the notation Mn(C) refers to the space of complex n× n matrices ;

• given a measure space (X,µ) and p ≥ 1, Lp(X, dµ) denotes the space of measurable
functions (in fact of equivalence classes of measurable functions, two functions being
equivalent if they are equal µ-almost everywhere) such that |f |p is µ-integrable over
X. Lp

comp(X, dµ) is the subspace of compactly supported elements of Lp(X, dµ) and
Lp

loc(X, dµ) the space of (equivalence classes of) measurable functions such that |f |p
is integrable over any compact subset of X ;

• the functions spaces Ck, Ck
0 , Ck

b , Ck
δ , Hk, Hk

comp, H
k
loc, H

k
δ and L2

δ are defined in
section 2.3.

2.2 The principles of the 3+1 decomposition

We shall work on a smooth 4-manifold M equipped with a Lorentzian metric g with
signature ( + − −− ). (M, g) is oriented, time-oriented and is also assumed to be globally
hyperbolic. We denote by ∇a the Levi-Civita connection on (M, g). Global hyperbolicity
implies (see Geroch [20], [21] and [22]) :

1. (M, g) admits a spin structure and we choose one. M is then endowed with an
SL(2,C) principal bundle PS of spin-frames. The bundle S of negative or anti-
selfdual spinors (denoted SA in the abstract index formalism) is given by

S = PS ×ρ C
2 (2.1)

where ρ is the standard representation of SL(2,C) on C2 ; the bundle S̄ of positive
or selfdual spinors (denoted SA′

in the abstract index formalism) is

S̄ = PS ×ρ̄ C2 (2.2)
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i.e. the complex structure in S is simply replaced by its opposite. The complex
tangent bundle is TaM⊗C = SA⊗SA′

. Hence, an abstract tensor index a is a couple
of abstract spinor indices, one primed, the other unprimed, clumped together : a =
AA′. The dual bundle S∗ to S is denoted SA in the abstract index formalism and S̄∗ is
denoted SA′ . The symplectic forms on S and S̄ are denoted respectively εAB and εA′B′

and are referred to as the Levi-Civita symbols. εAB can be seen as an isomorphism
from S onto S∗ which to κA associates κA = κBεBA. The inverse isomorphism,
denoted εAB, to κA associates κA = εABκB. Similarly, εA′B′ and the corresponding
εA′B′

can be regarded as lowering and raising devices for primed indices. The metric
g is expressed in terms of the Levi-Civita symbols as gab = εABεA′B′ .

2. There exists a global “time function” t on M. The level hypersurfaces Σt, t ∈ R,
of the function t define a foliation of M, all Σt being Cauchy hypersurfaces and
homeomorphic to a given smooth 3-manifold Σ. Geroch’s theorem does not say
anything about the regularity of the leaves Σt ; the time function is only proved
to be continuous and they are thus simply understood as topological submanifolds
of M. H.P. Seifert [58] showed that the time function can be regularized and one
can then understand the leaves Σt as Ck submanifolds of M if the metric is itself
Ck. For simplicity, we shall assume that the time function is smooth on M and the
leaves are diffeomorphic to Σ. In such a case, the function t is indeed a smooth
time coordinate on M. It is constructed so as to be increasing along any non
spacelike future-oriented curve and the smoothness of t allows us to consider its
gradient : ∇at is everywhere orthogonal to the level hypersurfaces Σt of t and is
therefore everywhere timelike ; it is also future-oriented. We identify M with the
smooth manifold R×Σ and consider g as a tensor valued function on R×Σ whose
regularity and fall-off at infinity can be specified. Note that there can be several
manners of identifying points on different hypersurfaces Σt, i.e. of fixing the product
structure M ' R × Σ. The natural idea is to quotient M by the integral lines of
the timelike vector field ∇at, but one could choose other timelike vector fields.

If in addition, our space-time is asymptotically flat, then there exists a compact subset K
of Σ such that Σ \K is diffeomorphic to the exterior of a ball in R3 (assuming that the
manifold Σ has only one asymptotically flat end ; if Σ has several asymptotically flat ends,
then Σ \K is the reunion of a finite number of manifolds with boundary Mi, i = 1, ..., N ,
each Mi being diffeomorphic to the exterior of a ball in R3).

We use the foliation to perform a 3+1 (or space/time) decomposition of the metric.
Let T a be the future-pointing timelike vector field normal to Σt, normalized for later
convenience to satisfy

T aTa = 2,

i.e.

T a =

√
2

|∇t|∇
at , where |∇t| =

(

gab∇at∇bt
)1/2

. (2.3)
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At each point p ∈ M, the metric g can be decomposed into its orthogonal parts along T a

and (T a)⊥ = TpΣt :

gab =
1

2
TaTb − hab (2.4)

where −h is the restriction of g to TpΣt, whence

T ahab = 0 , (2.5)

and the 1-form Ta is given by

Tadx
a =

√
2

|∇t|∇at dx
a =

√
2

|∇t|dt . (2.6)

We define the lapse function N(p) by

Tadx
a = Ndt , i.e. N =

√
2

|∇t| (2.7)

and the decomposition of the metric g then takes the form

g =
1

2
N2dt2 − h. (2.8)

We now choose to define the product structure using the timelike vector field ∇at (or
equivalently T a), the vector field ∂/∂t is then defined independently of the choice of
coordinates on Σ and is everywhere orthogonal to Σt. More explicitely, we have

(

∂

∂t

)a

=
N

2
T a, (2.9)

whence

hab

(

∂

∂t

)a

= 0. (2.10)

For this choice of product structure, let us consider a coordinate system on M ' R×Σ :
x0 = t , x1, x2, x3. From (2.10), we infer that the expression of h in these coordinates is as
follows

habdx
adxb =

3
∑

a,b=1

hab(t, x1, x2, x3)dxadxb.

Thus h is naturally interpreted as a time-dependent Riemannian metric on Σ.
We use the decomposition of the metric to project the connection ∇a along T a and

along (T a)⊥. We obtain

∇a =
1

2
TaT

b ∇b − ha
b ∇b =

1

2
Ta∇T + Da, (2.11)

where ∇T = T a∇a is the covariant derivative along T a and Da = −ha
b ∇b is the part of ∇a

orthogonal to T a : T aDa = 0. Da is the four-dimensional covariant derivative restricted
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(by composition with the projection operator −ha
b) to act tangent to Σt. It differs from

the Levi-Civita connection on (Σt, h(t)) by a combination of the extrinsic curvature (or
second fundamental form) of the leaves of the foliation. In particular DaTb = Kab = K(ab)

is
√

2 times the extrinsic curvature. More precisely we have1

Kab = DaTb = ha
chb

d∇cTd = − 1

N

∂

∂t
hab (2.12)

and obviously T aKab = 0.
Using the spinor form TAA′

of the vector T a to convert primed indices to unprimed
indices and vice versa2, we introduce modified forms of the spacelike part of the covariant
derivative

DAB = TA′

A DBA′ = TA′

(A∇B)A′ , DA′B′ = TA
A′DB′A = TA

(A′∇B′)A . (2.13)

These will naturally arise when considering the spacelike part of a Dirac or a Weyl equa-
tion.

2.3 Classes of asymptotically flat space-times

Weighted Sobolev spaces are particularly well adapted to the description of asymptotically
flat space-times because they contain information about both the regularity and fall-off
at infinity of functions. We shall define classes of asymptotically flat metrics by requiring
that they are continuously differentiable in time up to a certain order with values in some
weighted Sobolev space on Σ. Hence, we need to define Sobolev-type spaces on Σ without
explicit reference to the metric g that we are trying to characterize. To this effect, we
equip Σ with a smooth Riemannian metric h̃ which is euclidian outside a compact set. We
denote by D̃ and dVolh̃ the covariant derivative and the volume element on Σ associated
with h̃ and by <,> the positive definite inner product induced by h̃ on tensors and spinors
at a point. The families of function spaces that we shall use are the following:

• Ck(Σ), k ∈ N ∪ {∞}; the space of k times continuously differentiable functions on
Σ. Ck

0 (Σ) will denote the subspace of compactly supported functions and Ck
b (Σ) the

subspace of functions uniformly bounded on Σ together with their derivatives.

• Sobolev spaces: Hs(Σ), s ∈ N; the completion of C∞
0 (Σ) in the norm

‖f‖Hs(Σ) =

{

s
∑

p=0

∫

Σ

〈

D̃pf, D̃pf
〉

dVolh̃

}1/2

. (2.14)

1Note that the expression of the extrinsic curvature as the time derivative of the spacelike part of the
metric is only valid for the product structure defined by the vector field T a.

2The normalization of T a implies that TA
A′TB′

A = −εA′
B′

and TA′

A TB
A′ = −εA

B . This shows that
converting indices twice leads to a sign change. Also, the conversion of indices commutes with the
Levi-Civita connection of (Σt, h(t)) but not with Da.
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The space H0(Σ) is L2(Σ, dVolh̃) denoted simply L2(Σ). Hs
comp(Σ) is the subspace

of compactly supported elements of Hs(Σ) and Hs
loc(Σ) the space of functions f ∈

L2
loc(Σ) (or of distributions f on Σ) such that, for any cut-off function χ ∈ C∞

0 (Σ),
we have χf ∈ Hs(Σ).

• weighted Sobolev spaces: Hs
δ (Σ), s ∈ N, δ ∈ R; the completion of C∞

0 (Σ) in the
norm

‖f‖Hs
δ
(Σ) =

{

s
∑

p=0

∫

Σ

(

1 + r2
)−δ− 3

2
+p
〈

D̃pf, D̃pf
〉

dVolh̃

}1/2

, (2.15)

where r(x) is the h̃-distance from x to a fixed point O ∈ Σ (the function space is
independent of the choice of O). We are using the numbering of weighted Sobolev
spaces proposed by R. Bartnik3 in [5] ; the power 3/2 in the expression of the norm
is to be understood as n/2, n being the dimension of the spacelike slices. This
numbering has the advantage of indicating clearly the rate at which the functions
in Hs

δ fall off or grow at infinity, as we shall see shortly. The space H0
δ (Σ) will be

denoted L2
δ(Σ).

• Ck
δ (Σ), k ∈ N, δ ∈ R; the space of functions in Ck(Σ) for which the norm

‖f‖Ck
δ
(Σ) = sup

x∈Σ

k
∑

l=0

{

(

1 + r2
)−δ+l

〈

D̃lf, D̃lf
〉}1/2

(2.16)

is finite. This gives the following control on the behaviour of f and its derivatives
at spacelike infinity :

D̃lf = O
(

rδ−l
)

, as r → +∞ , 0 ≤ l ≤ k.

This is effectively a control on the fall-off at spacelike infinity of f and its derivatives
if δ < 0.

The continuous embedding (see Y. Choquet-Bruhat and D. Christodoulou [9])

Hk
δ ↪→ Ck−2

δ′ (Σ), δ′ > δ , k ≥ 2 (2.17)

gives an estimate on the behaviour at infinity of functions in a weighted Sobolev space
and their derivatives. It is important to remark that the correspondence between the
weight and the growth or fall-off at infinity is not quite exact. Indeed, a function f in Hk

δ

will not necessarily behave at infinity like rδ, but we shall have f = O(rν) for any ν > δ.
We now define the classes of asymptotically flat space-times that we shall consider.

3The numbering of weighted Sobolev spaces used in [9] and in [42] was the “usual” one which is
different from the one used by R. Bartnik. Whenever we quote results from these sources, we simply
re-express them using Bartnik’s numbering. We also use the notational conventions of R. Bartnik for Ck

δ

spaces ; in [9] and [42], the weight index δ for these spaces has the sign opposite to the one chosen here.
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Definition 2.1 We say that the metric g on R× Σ is of class (k, δ), k ∈ N∗, δ ∈ R if

g −
(

dt2 − h̃− ρ(x)
m

r

)

∈ Cl
(

Rt;H
k−l
δ (Σ)

)

, ∀l; 0 ≤ l ≤ k

(where m is a symmetric 2-form constant outside a compact set, ρ is a smooth cut-off
function on Σ such that ρ ≡ 0 in a neighbourhood of O and ρ ≡ 1 outside a compact
domain) and if moreover g satisfies the non degeneracy condition

(H) There exist two continuous, strictly positive functions on R : C1, C2 such that for
each (t, x) ∈ R×Σ, the lapse function N and the eigenvalues λi(t, x), i = 1, 2, 3, of
h(t, x) as a symmetric form relative to h̃ satisfy C1(t) ≤ N(t, x) ≤ C2(t), C1(t) ≤
λi(t, x) ≤ C2(t).

The intersection of all classes (k, δ), k ∈ N∗, will be called class (∞, δ).

Of course, the definition of these classes of metrics is independent of the choice of h̃.

Remark 2.1 1. The quantity m/r, appearing in the comparison metric used to define
the classes (k, δ) (in definition 2.1), allows for the presence of energy (or mass) in
our space-times. It is usually simply the term in 1/r in the asymptotic expansion of
the Schwarzschild metric in powers of 1/r, i.e. for r large enough,

m

r
=

2M

r
dt2 +

2M

r
dr2 .

This gives, outside a compact set, the following expression for the comparison metric

dt2 − h̃− ρ(x)
m

r
=

(

1 − 2M

r

)

dt2 −
(

1 +
2M

r

)

dr2 − r2dω2 ,

that is, the first two terms (constant and in 1/r) in the asymptotic expansion of the
Schwarzschild metric at infinity.

2. Definition 2.1 is valid for space-times admitting one or several asymptotically flat
ends. One could, in principle, associate different mass terms m/r to each asymptotic
end ; though mathematically reasonable, the physical significance of such a choice
would be rather mysterious.

It was remarked in [42] that if g is of class (k, δ), k ≥ 3, δ < 0, we can define the spaces
H l(Σt), H

l
ρ(Σt), t ∈ R, 0 ≤ l ≤ k−2, ρ ∈ R associated with the metric h(t) on Σ and (H)

entails that the norms on these spaces are equivalent to the norms on H l(Σ) and H l
ρ(Σ)

respectively, this norm equivalence being uniform on each compact time interval.
We see from (2.17) that if g is of class (k, δ), k ≥ 2, δ ∈ R, then

g −
(

dt2 − h̃− ρ(x)
m

r

)

∈ Cl
(

Rt; Ck−l−2
δ′ (Σ)

)

, ∀l, δ′; 0 ≤ l ≤ k − 2, δ′ > δ .
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Note that g compared to the flat metric at infinity satisfies (the fall-off here is weaker
because the Schwarzschild term m/r is no longer present in the comparison metric dt2−h̃)

g − (dt2 − h̃) ∈ Cl
(

Rt;H
k−l
ν (Σ)

)

, ∀l, ν ; 0 ≤ l ≤ k, ν > max(δ,−1) (2.18)

and therefore

g − (dt2 − h̃) ∈ Cl
(

Rt; Ck−l−2
ν (Σ)

)

, ∀l, ν ; 0 ≤ l ≤ k − 2, ν > max(δ,−1) .

To express things in a simpler way, a metric g of class (k, δ) will be asymptotically flat as
soon as k ≥ 2 and δ < 0 in the sense that g will be continuous on R× Σ and tend to the
Minkowski metric at spacelike infinity. Such metrics will be called weakly asymptotically
flat. In order to give a stronger, more physical meaning to asymptotic flatness, one usually
imposes

D̃l
(

g −
(

dt2 − h̃− m

r

))

= O
(

r−3/2−l
)

, r → +∞. (2.19)

This is guaranteed by any δ < −3/2, but as already mentioned, the nature of the embed-
ding (2.17) is such that this correspondence is not exact. Metrics of class (k, δ), k ≥ 2,
δ < −3/2 will always fall off at spacelike infinity a little faster than (2.19) ; conversely, if
g satisfies (2.19), then g will belong to all classes (k, δ), δ > −3/2 (k depending on the
regularity of g). Black hole space-times such as Schwarzschild or Kerr satisfy (2.19) at
infinity and in fact a little more :

D̃l
(

g −
(

dt2 − h̃− m

r

))

= O
(

r−2−l
)

, r → +∞ .

In [11] and [39], a weaker version of asymptotic flatness is considered, with only the
following requirements as r → +∞

g −
(

dt2 − h̃− m

r

)

= o
(

r−1
)

, D̃l
(

g −
(

dt2 − h̃− m

r

))

= o
(

r−l−1
)

.

Note that even in the weakest version of asymptotic flatness (k ≥ 2, δ < 0) the
property (H) is a direct consequence of the fact that g is a non degenerate continuous
Lorentzian metric on R× Σ which tends to the Minkowski metric at spacelike infinity.



Chapter 3

Dirac fields on globally hyperbolic
space-times

In this chapter, we only require the space-time (M, g) to be globally hyperbolic and
we shall use the foliation {Σt}t to perform a 3+1 decomposition of the Dirac equation.
Throughout this whole chapter, the product structure will be associated with T a.

3.1 The Dirac and Weyl equations

We first describe the Dirac equation on (M, g) in terms of Dirac spinors. The bundle of
Dirac spinors on M is defined as

SDirac = S∗ ⊕ S̄ = SA ⊕ SA′

. (3.1)

We choose on M a local orthonormal Lorentz frame, i.e. a set of four real vector fields
{e0, e1, e2, e3} such that

g00 = −gaa = 1, a = 1, 2, 3 ; gab = 0 , a 6= b ,

gab denoting g(ea, eb), i.e. the components of gab in the basis {e0, e1, e2, e3}. We make
the most natural choice for e0 here, that is

e0
a :=

1√
2
T a (3.2)

and e1, e2, e3 are thus everywhere tangent to the hupersurfaces Σt. The Dirac operator
on M is defined by

D =
3
∑

a=0

ea.∇ea (3.3)

where ea. denotes the Clifford product by the vector ea and ∇ea the directional covariant
derivative along ea. The Dirac equation on M is then

(D + im) Ψ = 0 , (3.4)

19



20 CHAPTER 3

Ψ ∈ SDirac and m ≥ 0 is the mass of the particle. More explicitely, via a choice of spin-
frame, the Clifford multiplication of a Dirac spinor Ψ by each vector ea will be described
as the multiplication by a 4 × 4 matrix γa. The Dirac matrices γ0, γ1, γ2, γ3 satisfy the
axioms of Clifford multiplication

γaγb + γbγa = 2gabId4 , a,b = 0, 1, 2, 3,

and the Dirac equation is then expressed in the following manner

3
∑

a=0

γa∇eaΨ + imΨ = 0 . (3.5)

In terms of two component spinors and abstract indices, the same equation (3.4) takes
the form

{ ∇AA′

φA = µχA′

,
∇AA′

χA′ = µφA, µ = m√
2
.

(3.6)

The structure here is much clearer : we have two Weyl equations (one for anti-neutrinos
and the other for neutrinos) coupled by the mass. We have chosen to express the second
equation in a form which emphasizes the fact that it is the complex conjugate of an
equation of the type of the first one. However, we can equivalently write it

∇AA′χA′

= −µφA .

It is easy to recover from (3.6) the more broadly used expression (3.5) involving Dirac
matrices. We choose a normalized spin-frame {oA, ιA} (also denoted {ε0

A, ε1
A}), that is,

a pair of sections of SA such that oAι
A = 1. The dual basis of SA is {εA

0, εA
1} where

εA
0 = −ιA and εA

1 = oA. The choice of {oA, ιA} is usually done by choosing a Newman-
Penrose tetrad : a set of four null vector fields {la, na,ma, m̄a}, la and na being real and
ma complex, such that

lan
a = 1 , mam̄

a = −1 , lam
a = 0 , nam

a = 0 .

The spin-frame {oA, ιA} is then fixed, up to an overall sign, by requiring

la = oAōA′

, na = ιAῑA
′

, ma = oAῑA
′

, m̄a = ιAōA′

.

We define the Infeld-Van der Waerden symbols ga
AA′

as the spinor components of the
frame vectors in the spin-frame :

ga
AA′

= ea
AA′

= ga
aεA

AεA′

A′

=

(

na −m̄a

−ma la

)

(3.7)

(recall that ga
a = ea

a denotes the vector field ea). We use these quantities to express
equation (3.6) in terms of spinor components :

{

−i∇AA′

φA = −igaAA′∇aφA = −i m√
2
χA′

,

−i∇A
A′

χA′ = i∇AA′χA′

= iga

AA′∇aχ
A′

= −i m√
2
φA ,

(3.8)
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where ∇a denotes ∇ea . For a = 0, 1, 2, 3, we introduce the 2 × 2 matrices

Ma = tgaAA′

, Na = ga

AA′ , (3.9)

and the 4 × 4 matrices

γa =

(

0 i
√

2Na

−i
√

2Ma 0

)

. (3.10)

Putting Ψ := φA ⊕ χA′

, the components of Ψ in the spin-frame are Ψ = t(φ0, φ1, χ
0′ , χ1′)

and (3.8) becomes
3
∑

a=0

γa∇eaΨ + imΨ = 0 .

Remark 3.1 The matrix V AA′

of the spinor components of a vector V a in a normalized
spin-frame has the important property that

det
(

V AA′

)

=
1

2
VaV

a .

Indeed,

VaV
a = V aV bgab = V AA′

V BB′

εABεA′B′ = 2
(

V 00′V 11′ − V 01′V 10′
)

since

εAB = εA′B′ =

(

0 1
−1 0

)

.

Hence, we have

det
(

g0
AA′

)

=
1

2
, det

(

ga
AA′

)

= −1

2
, a = 1, 2, 3,

and therefore detM0 = 1/2, detMa = −1/2, a = 1, 2, 3. The process for obtaining Na

from Ma is first to transpose Ma in order to obtain the matrix gaAA′

and then to lower
the two concrete spinor indices. This exchanges the diagonal terms and changes the sign
of the terms outside the diagonal, whence Na = (detMa) (Ma)−1. Consequently

γ0 = i

(

0
(√

2M0
)−1

−
√

2M0 0

)

, γa = −i
(

0
(√

2Ma
)−1

√
2Ma 0

)

, a = 1, 2, 3.

We clearly see that

(

γ0
)2

= −
(

γ1
)2

= −
(

γ2
)2

= −
(

γ3
)2

= Id4 .

We still need to prove that these matrices anticommute in order to see that they are a set
of Dirac matrices.
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Lemma 3.1 The matrices γa, a = 0, 1, 2, 3, defined by (3.9) and (3.10), are indeed a set
of Dirac matrices.

Proof of lemma 3.1 : this is in fact a classic result and a straightforward consequence of
the following identity (see [53], Vol. 1, p. 124)

gab = εABεA′B′ga
AA′

gb
BB′

which is the component version of gab = εABεA′B′ . This identity is equivalent to

εB
Agab = gb

BA′gaAA′

+ ga

BA′gbAA′

,

i.e.
NbMa +NaMb = gabId2 = gabId2 ,

as well as to
εA′

B′

gab = gaAB′

gb

AA′ + gbAB′

ga

AA′ ,

i.e.
MaNb +MbNa = gabId2 = gabId2 .

This proves the lemma. 2

From now on, we shall assume our Dirac matrices to be of the form (3.10),
i.e. to be compatible with the description of the Dirac equation in terms of
two-component spinors.

We see that in the formalism of two-component spinors and abstract indices, the
Clifford product by the frame vectors e0, e1, e2, e3 is represented on S∗ and S̄ as

ea. : φ ∈ S∗ 7−→ −i
√

2 gaAA′

φA ∈ S̄ ,
ea. : χ ∈ S̄ 7−→ i

√
2 ga

AA′χA′ ∈ S∗ ,
and we have

−i
√

2∇AA′

φA =
3
∑

a=0

ea.∇eaφ = Dφ ,

i
√

2∇AA′χA′

=
3
∑

a=0

ea.∇eaχ = Dχ .

The Weyl equations for antineutrinos and neutrinos, respectively :

∇AA′

φA = 0 , ∇AA′

χA′ = 0
(

or equivalently ∇AA′χA′

= 0
)

,

are simply the massless Dirac equations

Dφ = 0 , Dχ = 0 ,

where the Dirac operator D is restricted to act on the spin-bundles S∗ and S̄ respectively
instead of SDirac. The Dirac equation in terms of two-component spinors (3.6) can be
written as

{

Dφ = −imχ ,
Dχ = −imφ . (3.11)
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Remark 3.2 The Clifford product by e0, when restricted to act on S∗ (respectively on S̄),
takes the form

e0. : φ ∈ S∗ 7−→ −i
√

2 g0AA′

φA = −iTAA′

φA = −iεA′B′

TB′

AφA ∈ S̄ ,

respectively,

e0. : χ ∈ S̄ 7−→ i
√

2 g0
AA′χA′

= iTAA′χA′

= iεBAT
B

A′χA′ ∈ S∗ .

This shows that the Clifford multiplication by e0 and the conversion of indices are essen-
tially the same operation. They commute with the Levi-Civita connection on each leaf of
the foliation, but not with the connection Da.

We conclude this section with an explicit choice of spin-frame and the corresponding
expressions of Dirac matrices :

Remark 3.3 A particularly convenient choice of spin-frame corresponds to the Newman-
Penrose tetrad

la =
1√
2

(e0
a + e1

a) , na =
1√
2

(e0
a − e1

a) ,ma =
1√
2

(e2
a + ie3

a) . (3.12)

The spinor components of the frame vectors (i.e. the Infeld-Van der Waerden symbols)
are then

g0
AA′

=
1√
2

(

1 0
0 1

)

, g1
AA′

=
1√
2

(

1 0
0 −1

)

,

g2
AA′

=
1√
2

(

0 1
1 0

)

, g3
AA′

=
1√
2

(

0 −i
i 0

)

, (3.13)

and the associated Dirac matrices are

γ0 = i

(

0 σ0

−σ0 0

)

, γa = i

(

0 σa

σa 0

)

, a = 1, 2, 3, (3.14)

where σ0, σ1, σ2, σ3 are the Pauli matrices :

σ0 =

(

1 0
0 1

)

, σ1 =

(

1 0
0 −1

)

, σ2 =

(

0 1
1 0

)

, σ3 =

(

0 i
−i 0

)

. (3.15)

3.2 3+1 decomposition of the equation

The bundle of Dirac spinors SDirac is equipped with an SL(2,C) invariant inner product
given by

(Φ,Ψ) = iψ̄ρ− iφχ̄ = iψ̄A′ρA′ − iφAχ̄
A , for Φ = φA ⊕ ρA′

and Ψ = ψA ⊕ χA′

. (3.16)

This inner product is of course not positive definite.
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We consider the hypersurfaces of the foliation ; each Σt is equipped with an SU(2)
principal bundle PS(t) of spin-frames. The vector field e0 gives a natural embedding of
PS(t) into the SL(2,C) principal bundle PS of spin-frames of M and thus realizes PS as a
lift of the bundles PS(t). e0 thus provides SDirac with a hermitian positive definite SU(2)
invariant inner product :

〈Φ,Ψ〉 = (e0.Φ,Ψ) =
(

i
√

2 g0
AA′ρA′ ⊕−i

√
2 g0AA′

φA , ψA ⊕ χA′

)

=
√

2
[

g0AA′

φAψ̄A′ + g0
AA′ρA′

χ̄A
]

= TAA′

φAψ̄A′ + TAA′ρA′

χ̄A. (3.17)

We see that e0 also induces positive definite hermitian inner products on S and S̄ :

〈φ, ψ〉 = TAA′φAψ̄A′

, 〈ρ, χ〉 = TAA′ρA′

χ̄A. (3.18)

The Clifford product by any of the frame vectors e0, e1, e2, e3 is a self-adjoint operator
for the scalar product (., .). Indeed, for any choice of spin-frame {oA, ιA}, the matrices
Ma, Na, a = 0, 1, 2, 3, defined in (3.9) are hermitian and this entails that the matrices γa,
a = 0, 1, 2, 3 of (3.10) are self-adjoint for the inner product (., .). This property implies
that the Clifford multiplication by e0 is self-adjoint for the inner product < ., . > while
the Clifford product by ea, a = 1, 2, 3 anticommutes with e0. and is therefore skew-adjoint
for < ., . >.

Remark 3.4 If we choose the spin-frame {oA, ιA} such that

TAA′

= TAA′ = Id2 , (3.19)

i.e.

e0
a =

1√
2

(la + na) =
1√
2

(

oAōA′

+ ιAῑA
′

)

,

then the matrix γ0 is given by

γ0 = i

(

0 σ0

−σ0 0

)

, σ0 = Id2 (3.20)

and the inner product (., .) takes the simple form

(Φ,Ψ) = Ψ†γ0Φ , Ψ† = tΨ̄ =
(

Ψ1,Ψ2,Ψ3,Ψ4

)

. (3.21)

The positive definite inner product takes an even simpler form

〈Φ,Ψ〉 =
(

γ0Φ,Ψ
)

= Ψ† (γ0
)2

Φ = Ψ†Φ . (3.22)

This can also be seen directly in the expression of < Φ,Ψ > involving two-component
spinors :

〈Φ,Ψ〉 = TAA′

φAψ̄A′ + TAA′ρA′

χ̄A = φ0ψ̄0′ + φ1ψ̄1′ + ρ0′χ̄0 + ρ1′χ̄1
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= φ0ψ0 + φ1ψ1 + ρ0′ χ0′ + ρ1′ χ1′ .

In this case, the skew-adjointness of ea., a = 1, 2, 3 for this inner product simply means
that the matrices γa, a = 1, 2, 3 are skew hermitian.
Henceforth, we shall systematically work with this type of spin-frame, i.e. we shall always
assume (3.19), (3.20) satisfied and the expressions of the two inner products (., .) and
< ., . > in terms of components will always be (3.21) and (3.22). We say that such
spin-frames are adapted to the foliation.

We now describe the 3 + 1 decomposition of the Dirac equation. From the expression of
the Dirac operator

D =
3
∑

a=0

ea.∇ea ,

we can immediately write equation (3.4) as an evolution system :

e0.∇e0
Ψ = −

3
∑

a=1

ea.∇eaΨ − imΨ

and Clifford multiplying the whole equation by e0, we obtain

∇e0
Ψ = −

3
∑

a=1

e0.ea.∇eaΨ − im e0.Ψ . (3.23)

We denote

D
W
(t) :=

3
∑

a=1

ea.∇ea =
3
∑

a=1

ea.Dea on Σt . (3.24)

D
W
(t) is the Dirac operator on Σt associated with the connection Da, we call it the

Dirac-Witten1 operator. Let us introduce D
Σ
(t) the Dirac operator associated with the

Levi-Civita connection on (Σt, h(t)). The difference between D
W
(t) and D

Σ
(t) is explicitely

given by (see A. Sen [56] and [57], also M. Herzlich [26])

D
W
(t) = D

Σ
(t) +

1

2
√

2
K e0. (3.25)

where K = Tr(Kab) = Ka
a is

√
2 times the trace of the extrinsic curvature. An interesting

upshot of this is that for a maximal foliation, that is a foliation for which the extrinsic
curvature of the leaves is trace-free, the Dirac-Witten operator and the standard Dirac
operator coincide on each Σt. Another advantage of such foliations is that dVolh(t) is
independent of t. In the present work however, we will consider general foliations and not
require them to be maximal.

1This appellation refers to the fact that this Dirac operator, associated with the restriction to Σt of
the full space-time connection and not with the torsion-free connection on (Σ, h(t)), was used by Witten
in his historic paper [64].
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The operator D
W
(t) is formally self-adjoint on L2(Σt;SDirac) endowed with the inner

product

〈Φ,Ψ〉L2(Σt)
=

∫

Σ

〈Φ,Ψ〉 dVolh(t) (3.26)

i.e. it is symmetric on C∞
0 (Σt ;SDirac) for this inner product2. We have the Bochner-

Lichnerowicz-Weitzenböck-Witten formula (see for example [26] or [51])

D
W

∗ D
W

= D
W

2 = D∗D + R (3.27)

where R is the endomorphism of SDirac (its restriction to S∗ or S̄ is also an endomorphism
of S∗ or S̄ respectively) defined as

R =
1

2

(

G(e0, e0) +
3
∑

a=1

G(e0, ea)e0.ea.

)

(3.28)

where Gab = Rab − 1
2
Rgab is the Einstein tensor of (M, g), Rab is the Ricci tensor and its

trace R = Ra
a is the scalar curvature.

We can write the Dirac equation as

∇e0
Ψ = −e0.DW

(t)Ψ − im e0.Ψ = −e0.DΣ
(t)Ψ − 1

2
√

2
KΨ − im e0.Ψ . (3.29)

The operator e0.DΣ
(t) is formally skew-adjoint on L2(Σt), since D

Σ
(t) and e0. are symmetric

and e0. anticommutes with ea. for a = 1, 2, 3 and commutes with the Levi-Civita connec-
tion3 on (Σt, h(t)). Therefore, the Dirac equation is a first order symmetric hyperbolic
system on Σ. We express this property more precisely in the following lemma :

Lemma 3.2 Given a spin-frame {oA, ιA} adapted to the foliation, for any coordinate
system on Σ, equation (3.29) takes the form

∂Ψ

∂t
=
N(t, x)√

2

{

3
∑

a=1

Aa(t, x)
∂Ψ

∂xa
+
(

−imγ0 +B(t, x)
)

Ψ

}

(3.30)

2K being a real scalar and the Clifford multiplication by e0 being a bounded self-adjoint operator on
L2(Σt) endowed with the inner product (3.26), the self-adjointness (or the formal self-adjointness) of D

W

is equivalent to that of D
Σ

and their domains are equal. The formal self-adjointness of Dirac operators is
established in [40]. Note that the operator D

W
(t) and the inner product (3.26) are intrinsic quantities ; the

property of formal self-adjointness is itself intrinsic. In the case of space-times which are asymptotically
flat, or compact in space, we have in fact more : D

W
(t) is self-adjoint on L2(Σt;SDirac) endowed with

the inner product (3.26) with domain H1(Σt;SDirac). This can be proved for smooth metrics using the
essential self-adjointness of Dirac operators on complete Riemannian manifolds admitting a spin or a
spinc structure, established in [19], and the formula (3.27) to show that the domain of the closure is H1.
The result can then be extended to C1 metrics using the theorem of stability of bounded invertibility (T.
Kato [31]).

3Note however that unless the foliation is maximal, e0.DW
(t) is not formally skew-adjoint on L2(Σt) ;

it is the sum of the skew-symmetric operator e0.DΣ
(t) and of 1

2
√

2
K, the latter being a real bounded

scalar potential and therefore symmetric, and even self-adjoint. This comes from the fact that e0. does
not commute with the connection Da.
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where Aa, a = 1, 2, 3 are 4 × 4 hermitian matrices, N is the lapse function and B is a
4 × 4 matrix. The factor N/

√
2 comes from the expression of the time derivative

∇e0
=

√
2

N

(

∂

∂t
+ connection terms

)

.

The coefficients of the matrices Aa are coefficients of the metric h(t). This is easily seen
when the orthonormal basis {e0, e1, e2, e3} is proportional to the coordinate basis, i.e.

ea = λa
∂

∂xa
, a = 1, 2, 3 ,

no sum being involved here ; the coefficients λa are given by

λa =

[

−g
(

∂

∂xa
,
∂

∂xa

)]−1/2

, a = 1, 2, 3

and the matrices Aa are then

Aa = −λaγ0γa , a = 1, 2, 3 .

The coefficients of Aa will merely be more complicated combinations of the metric coeffi-
cients when the coordinate basis is not orthogonal. The matrix B is made of space-time
connection coefficients, i.e. of first order derivatives of the coefficients of the metric g
(and not just h(t) since some connection terms come from the time derivative).

These properties are all we shall need to solve the Cauchy problem for the Dirac equation
in the next section.

We also describe the 3+1 decomposition of the Dirac equation in terms of two-compo-
nent spinors and abstract indices. Using the splitting

∇a =
1

2
T a∇T + Da =

1√
2
T a∇e0

+ Da ,

we can rewrite equation (3.6) as

{

TAA′∇e0
φA = −

√
2 DAA′

φA + µ
√

2χA′

,

TAA′∇e0
χA′

= −
√

2 DAA′χA′ − µ
√

2φA .

Multiplying the first equation by TBA′ , the second by TAB′

and using the following facts :

TBA′DAA′

= −TB
A′

DA
A′ = −DB

A , TAB′

DAA′ = DB′

A′ ,

we obtain
{

∇e0
φA =

√
2 DA

BφB +mTAB′ χB′

,

∇e0
χA′

= −
√

2 DA′

B′χB′ −mTBA′

φB.
(3.31)
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We denote

ID(t) : φA 7−→ DA
BφB , ÎD(t) : χA′ 7−→ −DA′

B′χB′

, on Σt . (3.32)

We shall call ID(t) the Sen-Witten4 operator on Σt.
√

2ID and
√

2ÎD are the operator

−e0.DW
= −e0.

3
∑

a=1

ea.Dea

restricted to act respectively on the spin-bundles S∗ and S̄ instead of SDirac. We have

− 1√
2
e0.DW

(t) =

(

ID(t) 0

0 ÎD(t)

)

.

The skew-symmetry of e0.DΣ
for the inner product (3.26) on L2(Σt;SDirac) is equivalent

to the skew-symmetry of both
√

2ID + 1
2
√

2
K and

√
2ÎD + 1

2
√

2
K for the respective inner

products on L2(Σt;S
∗) and L2(Σt; S̄) defined by (note that unless the foliation is maximal,

ID and ÎD are not skew-symmetric for these inner products)

〈φ, ψ〉L2(Σt;S∗) =

∫

Σ

TAA′

φAψ̄A′dVolh(t) , 〈ρ, χ〉L2(Σt;S̄) =

∫

Σ

TAA′ρA′

χ̄AdVolh(t) . (3.33)

In a local coordinate basis on Σ, we see that ID and ÎD take the form

3
∑

α=1

aα(t, x)
∂

∂xα
+ b(t, x)

where aα, α = 1, 2, 3 are 2 × 2 hermitian matrices made of coefficients of the metric h(t)
and b is a 2 × 2 matrix made of connection coefficients.

Finally, we recall a fundamental property (see for example [52]) of the Dirac equation :
the existence of a conserved current. We give the expressions of the current vector in
terms of two-component spinors as well as Dirac spinors. The proof of this property is
particularly simple in terms of two-component spinors as we shall see.

Lemma 3.3 Let Ψ := φA⊕χA′

be a solution to (3.4) and consider the real future-oriented
non spacelike vector

Ua = φAφ̄A′

+ χ̄AχA′

. (3.34)

4The equation DA
BφB = 0 is referred to as the Sen-Witten equation in [53]. It is the equation studied

by A. Sen in [56] to find the neutrino “zero-modes” or time independent normalizable solutions of the
neutrino equation. It is also closely related to the Dirac-Witten operator. The notation Da in Sen’s
paper refers to the Levi-Civita connection on (Σt, h(t)). His way of writing the “Sen-Witten” equation
is therefore DA

BφB − (π/(2
√

2))φA = 0, π = K/
√

2 being the trace of the extrinsic curvature. In [53],
Da denotes −ha

b∇b. We have chosen to follow the notations of Penrose and Rindler which are now the
established standard.
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We assume that Ψ has enough regularity to give a meaning to Ua and its divergence. A
reasonably minimal requirement is Ψ ∈ H1

loc(Rt×Σ ;SDirac) (Sobolev spaces on Rt×Σ can
be defined using the Riemannian metric dt2 + h̃). Then the vector field Ua is divergence-
free, i.e.

∇aUa = 0. (3.35)

Consequently, the 3-form ω = ∗Uadx
a is closed. The symbol ∗ denotes the Hodge dual

defined by
∗Uadx

a =
1

6
Uaeabcd dxb ∧ dxc ∧ dxd

where eabcd is an alternating tensor, i.e. the totally antisymmetric tensor

eabcd = iεACεBDεA′D′εB′C′ − iεADεBCεA′C′εB′D′ .

In a spin-frame adapted to the foliation, the current vector takes the form

Ua =
1√
2

3
∑

a=0

(

Ψ†γ0γaΨ
)

ea
a . (3.36)

Proof of lemma 3.3 : Let Ψ ∈ H1
loc(Rt×Σ ;SDirac) be a solution to (3.4) and Ua the vector

(3.34). We have

∇aUa = ∇AA′
(

φAφ̄A′

)

+ ∇AA′

(χA′χ̄A)

= φ̄A′∇AA′

φA + φA∇AA′

φ̄A′ + χ̄A∇AA′

χA′ + χA′∇AA′

χ̄A

= φ̄A′∇AA′

φA + φA∇AA′φA + χ̄A∇AA′

χA′ + χA′∇AA′χA′ .

Using equation (3.6), the divergence of Ua becomes

∇aUa = µ
(

φ̄A′χA′

+ φAχ̄
A + χ̄Aφ

A + χA′φ̄A′

)

which is identically zero due to the antisymmetry of the spinor inner product. Hence the
null vector Ua is divergence-free and its dual 3-form is therefore closed.

We conclude this proof by obtaining (3.36) from (3.34). The components of Ua are
given by

Ua = eaaUa = gaAA′

φAφ̄A′ + ga

AA′χA′

χ̄A

and in a spin-frame, this yields

Ua = φ†Maφ+ χ†Naχ

where φ† =
(

φ0, φ1

)

=
(

φ̄0′ , φ̄1′
)

and χ† =
(

χ0′ , χ1′
)

= (χ̄0, χ̄1). If the spin-frame is

adapted to the foliation, then

γ0γa =
√

2

(

Ma 0
0 Na

)

and we get

Ua =
1√
2
Ψ†γ0γaΨ .

This proves lemma 3.3. 2
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Chapter 4

The general Cauchy problem

In this chapter, we work on globally hyperbolic space-times (M, g), M ' Rt ×Σ, where,
outside a compact subset K, the smooth 3-manifold Σ is the disjoint union of a finite
number of manifolds with boundary :

Σ = K ∪
(

N
⋃

i=1

Mi

)

, Mi ' R3 \ B̄(0, 1) , Mi ∩Mj = ∅ if i 6= j .

The product structure R×Σ is associated with the vector field T a. We use the 3+1 decom-
position of Dirac’s equation to solve the Cauchy problem in Sobolev and weighted Sobolev
spaces on the classes of asymptotically flat metrics defined in chapter 2. The theorems
are obtained (except theorem 4) as consequences of more general results (propositions 4.1
and 4.2) proved for first order symmetric hyperbolic systems.

The theorems and propositions of this chapter are valid whether Σ admits one or
several asymptotic ends Mi. The case with no asymptotic end (Σ compact) can also be
considered : the results still hold but weighted Sobolev spaces then reduce to ordinary
Sobolev spaces and the expressions of theorem 3 and proposition 4.2 are thus slightly
modified.

We give the fundamental theorem concerning the well-posedness of the Cauchy prob-
lem for (3.4). It is valid for a wide family of metrics including the classes (k, δ), δ < 0,
k ≥ 3.

Theorem 1 We assume the metric g to satisfy hypothesis (H) of definition 2.1 and

g ∈ C(Rt; C1
b (Σ)) ∩ C1(Rt; C0

b (Σ)).

Then, for any real number s, for any initial data Ψ0 ∈ L2(Σ ;SDirac), equation (3.4) has
a unique solution Ψs ∈ C(Rt;L

2(Σ ;SDirac)), such that

Ψs|t=s = Ψ0.

Remark 4.1 For such low regularities of g and Ψs as are considered in theorem 1, we
still have a relatively natural and “strong” notion of solution. The regularity assumptions

31
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on g and Ψs entail in particular

g ∈ C1 (Rt × Σ) , Ψs ∈ L2
loc (Rt × Σ) .

We can define the first order partial derivatives of Ψs, with respect to a given coordinate
basis, in the sense of distributions ; these derivatives will belong to H−1

loc (Rt × Σ) which is
the dual of the subspace H1

comp (Rt × Σ) of compactly supported elements of H1 (Rt × Σ).
In equation (3.4), the coefficients of the first order terms are coefficients of the metric,
they are C1 on Rt × Σ. These terms are therefore multipliers of H1

comp (Rt × Σ) and

by duality multipliers of H−1
loc (Rt × Σ). The coefficients of the zero order terms are the

mass and connection coefficients, they are continuous on Rt × Σ and thus multipliers of
L2

loc (Rt × Σ). It follows that D acts continuously from L2
loc (Rt × Σ) to H−1

loc (Rt × Σ).
Equation (3.4), for a metric g and a spinor valued function Ψs having the regularity
assumed in theorem 1, is consequently to be understood as an equality in H−1

loc (Rt × Σ).
The initial data condition is completely straightforward because of the continuity in time
of Ψs.

For all Cauchy problems subsequently considered, the function space F in which the
solutions take their values will always be embedded in L2

loc(Σ) and the coefficients of the
first order part of the equations considered will always be at least C1 on Rt×Σ. Concerning
the zero order part, we shall allow for regularities lower than C0(Rt × Σ) and we shall
sometimes consider general (not necessarily local) potentials. However, the zero order
part will always act continuously from C(Rt;F ) to L1

loc(Rt;L
2
loc(Σ)) which is a distribution

space. Hence, the notion of solution will be interpreted as it is here (the equation being
understood as an equality in a space of distributions).

Using the well-posedness of the Cauchy problem in L2, we can show for more regular
metrics the existence of more regular solutions.

Theorem 2 We assume that the metric g satisfies hypothesis (H) of definition 2.1 and

g ∈ Cl(Rt; Ck−l
b (Σ)), ∀l; 0 ≤ l ≤ k,

for some positive integer k, then for any initial data Ψ0 ∈ Hm(Σ ;SDirac), 0 ≤ m ≤ k− 1,
the solution Ψs ∈ C (Rt;L

2(Σ ;SDirac)) to (3.4) associated with s and Ψ0 satisfies

Ψs ∈ Cl
(

Rt;H
m−l(Σ ;SDirac)

)

, ∀l; 0 ≤ l ≤ m.

We can also show the existence of solutions with a controlled growth or fall-off at spacelike
infinity. In particular, we obtain, using product theorems for weighted Sobolev spaces,
the existence of solutions with values in Hk−1

µ , µ ∈ R, for a metric g of class (k, δ), δ < 0,
k ≥ 3.

Theorem 3 We assume that g is of class (k, δ), k ≥ 3, δ < 0, and we consider some
initial time s ∈ R.
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1. For any initial data Ψ0 ∈ L2
µ(Σ ;SDirac), µ ∈ R, equation (3.4) has a unique solution

Ψs ∈ C
(

Rt;L
2
µ(Σ ;SDirac)

)

such that

Ψs|t=s = Ψ0.

(Note that L2
µ  L2 for µ < −3/2 but for µ > −3/2 we have L2  L2

µ).

2. For µ ∈ R and for m ∈ N such that 0 ≤ m ≤ k− 1, if the initial data Ψ0 belongs to
Hm

µ (Σ ;SDirac) then the solution Ψs ∈ C
(

Rt;L
2
µ(Σ ;SDirac)

)

associated with Ψ0 and
some initial time s satisfies

Ψs ∈ Cl
(

Rt;H
m−l
µ (Σ ;SDirac)

)

, ∀l; 0 ≤ l ≤ m.

For metrics slightly more regular than was assumed in theorem 1, we can prove that the
charge of the solutions is conserved :

Theorem 4 We assume that the metric g is regular enough to guarantee that the solution
of (3.4) associated with some compactly supported initial data in H1(Σ ;SDirac), belongs
to

C
(

Rt;H
1 (Σ ;SDirac)

)

∩ C1
(

Rt;L
2 (Σ ;SDirac)

)

.

This is in particular true for metrics satisfying hypothesis (H) of definition 2.1 and having
the regularity

g ∈
2
⋂

l=0

Cl(Rt; C2−l
b (Σ)),

as in theorem 2, or, using the compact support of the initial data, the finite propagation
speed and the results of theorem 3, for metrics of class (k, δ), k ≥ 3, δ < 0. Let us consider
Ψ ∈ C (Rt;L

2 (Σ ;SDirac)) a solution of (3.4). We define the “charge” of Ψ at time t as

E(t) := ‖Ψ(t)‖2
L2(Σt)

=

∫

Σ

〈Ψ(t),Ψ(t)〉 dVolh(t) =

∫

Σ

|Ψ(t)|2dVolh(t), (4.1)

then E(t) is constant throughout time.

Remark 4.2 It is important to note that the measure dVolh(t) in the definition of the
charge above is the volume element associated with the metric h(t) on Σ and therefore
depends on time. Hence, the conservation of the charge is not to be understood as the
conservation of the norm on a fixed L2 space; the norm is tied in with the space-time
geometry which is time-dependent.

If however (M, g) admits a foliation by maximal hypersurfaces Σt, i.e. surfaces for
which the trace of the extrinsic curvature vanishes, then, as was already mentioned earlier,
the volume element dVolh(t) on Σ will no longer depend on time and the charge will indeed
be the norm on a fixed L2 space on Σ.
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Remark 4.3 1. The regularity of the metric : if we want a metric of class (p, δ)
to have the regularity assumed in theorem 2, we need to impose p ≥ k + 2 (and of
course δ < 0) because of the Sobolev embedding (2.17). This means that for a metric
of class (k, δ), k ≥ 3, δ < 0, we can only guarantee the existence of solutions with
values in Hk−3 and this was the case in the results presented in [42]. In theorem 3
however, by working entirely in weighted Sobolev spaces we avoid the use of Sobolev
embeddings and we lose only one rank of regularity between the metric and the
solution, which is the minimum loss possible. A similar result with (non weighted)
Sobolev spaces is given in proposition 4.2 ; note however that assuming the metric
to live simply in Sobolev spaces is not so well adapted to general relativity since we
have less control on its fall-off at infinity than if we use weighted Sobolev spaces.

In theorem 3 we have assumed g to be of class (k, δ) with k ≥ 3 simply because
we have only defined the classes (k, δ) for integral values of k. If we allow k to be
any positive real number, then we can define the class (k, δ) as the set of metrics g
satisfying hypothesis (H) and

g −
(

dt2 − h̃− m

r

)

∈ Cl
(

Rt;H
k−l
δ (Σ)

)

, ∀l; 0 ≤ l ≤ [k].

Of course, one needs to define Sobolev spaces of non integral order on Σ but this
is easily done using local charts whose domains are regular open sets of Σ and the
standard definition of Sobolev spaces on regular open sets of Rn. In this new context,
imposing simply k > 5/2 and δ < 0 would just be enough to guarantee the validity
of the product theorems between weighted Sobolev spaces which are the fundamental
tools for the proof of theorem 3. Thus the theorem would still hold under these
hypotheses with only the slight modification that m needs to be lower than [k] − 1
instead of k − 1. We see that for 5/2 < k < 3 we could still guarantee the existence
of solutions with values in H1

µ.

2. Weighted Sobolev spaces : there is a strong motivation for proving the existence
of solutions to field equations with values in weighted Sobolev spaces in that it has
direct applications to the analysis of Einstein’s equations. Indeed, as was remarked
in [42] (see section 7.1 of this reference for more details), controlling the fall-off at
spacelike infinity of solutions to the spin 3/2 field equations is a first step towards
the control of the fall-off at spacelike infinity of solutions to Einstein’s equations.
Spin 3/2 field equations in the framework of weighted Sobolev spaces would hardly
be more difficult to study than Dirac’s equations (see chapter 7 Concluding remarks,
for more details).

3. Weyl’s equations : all the results given here for Dirac’s equation are naturally
valid for Weyl’s neutrino and anti-neutrino equations

∇AA′

ψA′ = 0 and ∇AA′

ηA = 0

since they are special cases of a massless Dirac equation where one of the two spinors
vanishes.
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Proof of theorem 1 : We choose a unitary spin-frame {oA, ιA} adapted to the foliation and
a local coordinate basis x1, x2, x3 on Σ. Equation (3.4) then takes the form (3.30) which
we recall here

∂Ψ

∂t
=
N(t, x)√

2

{

3
∑

a=1

Aa(t, x)
∂Ψ

∂xa
+
(

−imγ0 +B(t, x)
)

Ψ

}

where Aa, a = 1, 2, 3 are 4 × 4 hermitian matrices made of coefficients of h(t) and B is
a 4 × 4 matrix made of space-time connection coefficients. The Dirac spinor Ψ is now
represented by its components in the spin-frame and is thus to be considered as a function
on Rt × Σx with values in C4.

When the topology is trivial, the theorem is a consequence of known results concerning
symmetric hyperbolic systems (see T. Kato [32] and [33]). An extension of these results
to curved space-times with non trivial topology was given in [42], but the regularity
assumptions on the metric were stronger than they are here. We give and prove a general
result for symmetric hyperbolic systems on R× Σ with weakly regular coefficients :

Proposition 4.1 We consider ∂/∂t − A(t) a symmetric hyperbolic operator on R × Σ,
homogeneous of the first order, acting on B, an n-dimensional tensor or spinor bundle on
R× Σ. More precisely, this means that after a choice of local coordinates and of Lorentz
frame or spin-frame, each fibre of B is identified with Cn and A(t) takes the form

A(t) =
3
∑

i=1

ai(t, x)
∂

∂xi

where the ai’s are n×n hermitian matrices. We shall henceforth assume that such choices
have been made and consider the sections of B as Cn-valued functions. We assume that
the coefficients ai have the following regularity

ai ∈ C
(

Rt; C1
b (Σ ;Mn(C))

)

and we also consider some potential b such that

b ∈ L1
loc

(

Rt;L
(

L2(Σ;Cn)
))

.

Then, for any s ∈ R, for any u0 ∈ L2(Σ;Cn), the equation

∂u

∂t
= A(t)u+ b(t)u (4.2)

has a unique solution u ∈ C(Rt;L
2(Σ;Cn)) such that u|t=s = u0. The propagator for

equation (4.2), defined by
V(t, s) : u0 7−→ u(t),

where u is the solution to the Cauchy problem as above, satisfies



36 CHAPTER 4

(ı) ∀t, s ∈ R, V(t, s) ∈ L (L2(Σ;Cn)), V is strongly continuous on R2
t,s to L (L2(Σ;Cn))

and V(t, t) = IdL2(Σ;Cn).

(ıı) ∀r, s, t ∈ R, V(t, s) = V(t, r)V(r, s).

Note that by strongly continuous we mean continuous for the topology of strong convergence
of bounded operators : if An and A are bounded operators from a separable Hilbert space E
to another separable Hilbert space F , we say that An converges strongly to A as n→ +∞
if Anφ→ Aφ in F as n→ +∞, for any φ ∈ E.

Theorem 1 is then an easy consequence of the previous proposition: if the metric g is
as assumed in theorem 1, then the lapse-function N and the Ai’s whose coefficients are
coefficients of the metric, satisfy

N , Ai ∈ C(Rt; C1
b (Σ)) ∩ C1(Rt; C0

b (Σ)).

The matrix B is made of connection coefficients which are first order derivatives of the
metric, whence

N√
2

(

B − imγ0
)

∈ C
(

Rt; C0
b (Σ;M4(C))

)

↪→ L1
loc

(

Rt;L
(

L2(Σ;C4)
))

.

Thus proposition 4.1 can be applied and entails theorem 1. 2

Proof of proposition 4.1 : We solve the Cauchy problem for the “free” equation1

∂u

∂t
= A(t)u (4.3)

then we interpret b as a bounded operator on the space of solutions and the proposition
follows by a standard fixed point theorem. We first consider the situation where Σ has
trivial topology. In such a case, (Σ, h̃) is diffeomorphic to R3 and all (weighted or not)
Sobolev spaces on Σ are isomorphic to the same spaces on R3. (4.3) then becomes an
equation on Rt × R3:

∂u

∂t
=

3
∑

i=1

ai(t, x)
∂u

∂xi
, ai ∈ C

(

Rt ; C1
b

(

R3
x ;Mn(C)

))

.

The well-posedness of the Cauchy problem for such an equation is well known in a variety
of spaces and in particular, using the isomorphisms L2(Σ) ' L2(R3) andH1(Σ) ' H1(R3),
we get from the results of T. Kato in [32], [33] and [34], the existence of a unique family
of operators {U(t, s)} defined on Rt × Rs and satisfying

1The rather inappropriate denomination “free equation”, which appears several times in this work,
comes from a bad habit that the author has contracted doing scattering theory and talking with other
scattering theorists. What we mean by this is merely a simplified equation, obtained by removing some
potential (“interaction”). We also tend to refer to the propagators for these “free” equations as “free”
propagators.



THE GENERAL CAUCHY PROBLEM 37

a. U is strongly continuous from R2
t,s to L(L2(Σ;Cn)) and U(t, t) = IdL2(Σ;Cn)

b. U(t, s)U(s, r) = U(t, r)

c. U is strongly continuous from R2
t,s to L(H1(Σ;Cn))

d. ∂
∂t
U(t, s) = A(t)U(t, s), ∂

∂s
U(t, s) = −U(t, s)A(s) which both exist in the strong sense

in L (H1(Σ;Cn);L2(Σ;Cn)) and are strongly continuous on R2
t,s to this space.

We can also remark that the solutions propagate at a finite speed and the propagation
speed at each time t is estimated uniformly on R3 by the continuous function of t

C(t) = 3Sup
{

‖ai(t, x)‖, 1 ≤ i ≤ 3, x ∈ R3
}

. (4.4)

This is a standard result for first order symmetric hyperbolic systems on R3. A proof can
be found in R. Racke [55] for C1 solutions. We can prove it in our less regular case by
performing the same estimates as in [55] for a smooth function on R×R3 not supposed to
satisfy the equation, extending the final estimate to functions in C(Rt;L

2(R3)) by density
and simplifying it at last by restricting it to solutions of the equation. Of course (4.4)
implies that the propagation speed on (Σ, h̃), i.e. for the distance associated with h̃ which
is uniformly equivalent to the euclidian distance on R3, is estimated at each time by

C̃(t) = λC(t)

where λ is a positive constant such that, for each x, y ∈ Σ ' R3 we have dh̃(x, y) ≤ λ|x−y|,
|.| being the euclidian distance on R3. This result will be of some technical importance
for solving the Cauchy problem in non trivial topology and for proving the conservation
of the charge of Dirac fields.

If the topology of Σ is not trivial, it is in any case necessarily finite : indeed, it is
entirely determined by the (finite) number of asymptotically flat ends and by the (finite
since Σ is a manifold) topology of Σ inside a large enough compact subset. Hence we
can cover Σ with a finite number of smooth open sets of trivial topology {Ωi}1≤i≤p,
p ∈ N∗. We have on each Ωi a control on the propagation speed of type (4.4) where the
Sup is taken over Ωi and this control can be made uniform over Σ using the fact that
ai ∈ C(Rt; C1

b (Σ)). Hence, the propagation speed for the solutions of (4.3) is controlled on
Rt × Σ by a continuous function of t: C̃(t). We use this property to define “domains of
dependence” for the sets Ωi. This is done by evolving the boundary ∂Ωi of Ωi along the
flow of the vector field

C̃(t)νa +
1√
2
T a,

where νa is the interior unit normal to ∂Ωi, from a certain time t0 ∈ R. For t ≥ t0,
we obtain open sets Ωi(t), delimited by the evolved boundary, with Ωi(t0) = Ωi. The
continuity of C̃(t) makes it possible to choose the covering {Ωi} so that, when evolving
the sets into their domains of dependence from a time t0, {Ωi(t)}1≤i≤p is still a covering of
Σ by trivial topology smooth open sets if t0 ≤ t ≤ t0 + ε for a certain ε > 0. Moreover, ε
can be chosen independently of t0 if t0 is restricted to belong to a compact time interval.
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Let us now consider some initial time s ∈ R and some initial data u0 ∈ L2(Σ;Cn). We
consider T > 0 fixed and study the existence of the solution on [s − T, s + T ]. We first
put t0 = s. Using the well-posedness of the Cauchy problem in trivial topology, we have
in the domain of dependence of each Ωi existence of a unique solution continuous in time
with values in L2. Uniqueness in the trivial topology case guarantees local uniqueness
and allows us to recover a global solution on Σ from the solutions in the domains of
dependence as long as the Ωi(t) are a covering of Σ, i.e. at least on [t0, t0 + ε] where ε > 0
is as above and fixed on the whole interval [s − T, s + T ]. The solution thus obtained is
continuous on [s, s + ε] with values in L2(Σ): indeed, we have a finite number of sets in
the covering and for each t ∈ [s, s+ ε], the norm on L2(Σ) is equivalent (the equivalence
being uniform on [s, s+ ε]) to the sum of the flat L2 norms on each Ωi(t), i.e.

‖f‖L2(Σ) =

{∫

Σ

< f, f > dVolh̃

}1
2

'
{

∑

i

∫

Ωi(t)

|f(x)|2dµL(x)

}1
2

(4.5)

where dµL is the Lebesgue measure on R3. Then we put t0 = s + ε. In this manner, by
steps of length ε, we propagate the solution forward in time up to time s+ T . Reversing
time in equation (4.3) allows us to propagate backwards down to s − T . Hence we have
existence of a unique solution in C ([s− T, s+ T ];L2(Σ;Cn)) for any T > 0 fixed, that is
existence and uniqueness on C (Rt;L

2(Σ;Cn)).

The well-posedness of the Cauchy problem can be expressed in terms of propagators.
In each domain of dependence of a set Ωi we have a local propagator inherited from the flat
space propagator and satisfying local analogues of properties a,b,c,d. Local uniqueness
allows us to patch together these propagators to recover the global propagator for the
equation on Σ, that we shall still denote U(t, s). Using the norm-equivalence (4.5) and
the corresponding equivalence for H1 norms

‖f‖H1(Σ) =

{∫

Σ

(

< f, f > +
〈

D̃f, D̃f
〉)

dVolh̃

}1
2

'
{

∑

i

∫

Ωi(t)

(

|f(x)|2 +

∣

∣

∣

∣

∂f

∂x1
(x)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂f

∂x2
(x)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂f

∂x3
(x)

∣

∣

∣

∣

2
)

dµL(x)

}1
2

, (4.6)

we infer from the properties of the local propagators that U(t, s) satisfies properties a,b,c
and d. Hence, we can guarantee the existence of solutions with values in H1 as well as
L2.

In order to solve the Cauchy problem for equation (4.2) in C(Rt;L
2(Σ)), we express it

as a fixed point problem for an integral functional (this is the so-called Duhamel principle).
Given u0 ∈ L2(Σ) and s, T ∈ R, the two following problems are equivalent:

∂u

∂t
= A(t)u+ b(t)u, u ∈ C([s, T ];L2(Σ)), u|t=s = u0 (4.7)
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and

u(t) = Su(t) := U(t, s)u0 +

∫ t

s

U(t, τ)b(τ)u(τ)dτ, u ∈ C([s, T ];L2(Σ)) , (4.8)

where U(t, s) is the propagator for the free equation (4.3) constructed above.
Before solving problem (4.8), we justify the equivalence between (4.7) and (4.8). We

work in the case of a source, the extension to the potential being trivial as we shall see.
We consider the equation

∂u

∂t
= A(t)u+ f(t) (4.9)

where f ∈ L1
loc(Rt;L

2(Σ)). The fact that the solutions to the Cauchy problem for (4.9)
in L2 are given by the integral formula

u(t) = U(t, s)u0 +

∫ t

s

U(t, τ)f(τ)dτ (4.10)

was justified in an abstract setting by H. Tanabe [61], using the theory of analytic semi-
groups, under the assumption that f is C1 in time and for solutions living in the common
domain of the operators A(t). We have here the advantage of dealing with operators
A(t) which are differential operators. This allows us to give to the propagator U on L2 a
somewhat stronger meaning than what is possible to achieve in the abstract framework.
We have, in the strong sense on L(L2(Σ ;Cn);H−1(Σ ;Cn)), ∂

∂t
U(t, s) = A(t)U(t, s) ; this

operator is strongly continuous on R2
t,s to L(L2(Σ ;Cn);H−1(Σ ;Cn)) as the composition

of U , strongly continuous on R2
t,s to L(L2(Σ ;Cn)) with A(t), strongly continuous on Rt

to L(L2(Σ ;Cn);H−1(Σ ;Cn)). Using this remark, we can show that for u0 ∈ L2(Σ),
the function u ∈ C(Rt;L

2(Σ)) defined by (4.10) satisfies (4.9) : since U(t, s) is closed on
L2(Σ), we have

∫ t

s

U(t, τ)f(τ)dτ = U(t, s)

∫ t

s

U(s, τ)f(τ)dτ

and therefore, all time derivatives being strong derivatives on Rt with values in H−1(Σ),

∂

∂t
u(t) =

(

∂

∂t
U(t, s)

)(

u0 +

∫ t

s

U(s, τ)f(τ)dτ

)

+ U(t, s)
∂

∂t

(∫ t

s

U(s, τ)f(τ)dτ

)

= A(t)U(t, s)

(

u0 +

∫ t

s

U(s, τ)f(τ)dτ

)

+ U(t, s)U(s, t)f(t) = A(t)u(t) + f(t) .

Therefore u is a solution of (4.9) such that u(s) = u0. Besides, the uniqueness in
C(Rt;L

2(Σ)) of solutions to (4.9) is guaranteed by the uniqueness for (4.3) in the same
class. This proves that the solutions to the Cauchy problem for (4.9) in L2 are given by
(4.10). Now, the equivalence between (4.7) and (4.8) is easily seen. If u is a solution of
(4.8), then by the calculation above with f(t) replaced by b(t)u(t), we show that it satis-
fies (4.2). Conversely, for u solution to (4.7), putting f(t) = b(t)u(t) ∈ L1

loc([s, T ];L2(Σ)),
we have

∂

∂t
u(t) = A(t)u(t) + f(t) , u(s) = u0 ,
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whence, by the expression of solutions in the case of a source, u satisfies (4.8).

Remark 4.4 In the proofs of proposition 4.2 and theorems 5 and 6, we shall rely a number
of times on Duhamel’s principle. In each case, the function space where the solutions live
will be embedded in L2 or at least in L2

loc and so, the equivalence between the Cauchy
problem and its integral formulation can be justified just as we did here ; the only slight
difference may be that A(t)U(t, s) acts continuously from the function space considered to
H−1

loc instead of H−1.

We now proceed to solving problem (4.8). This is easily done by remarking that the
space C([s, T ];L2(Σ)) is stable under the functional S and for |T − s| small enough, S is
a strict contraction on the closed ball

Bs,T,u0
:=
{

u ∈ C([s, T ];L2(Σ)) ; ‖u(t)‖L2(Σ) ≤ 2‖u0‖L2(Σ) ∀t ∈ [s, T ]
}

.

Whence the existence of a unique fixed point for S in C([s, T ];L2(Σ)) for |T − s| small
enough. The uniform boundedness of U and the integrability of b on each compact time
interval imply that any solution to (4.8) on a compact time interval [s, T ] satisfies the
inequality (obtained using Gronwall’s lemma):

‖u(t)‖L2(Σ) ≤ C(s, T ) exp

(

C(s, T )

∫

[s,T ]

‖b(τ)‖L(L2(Σ))dτ

)

‖u0‖L2(Σ)

where C(s, T ) = Sup
{

‖U(t, τ)‖L(L2(Σ)); t, τ ∈ [s, T ]
}

. Hence, any solution to (4.7) on
[s, T ] is uniformly bounded in L2(Σ) on this interval, which suffices to ensure the existence
of a unique solution to the Cauchy problem for (4.2) in C(Rt;L

2(Σ)). Properties (ı) and
(ıı) of the propagator are straightforward consequences of the uniqueness of solutions and
of the integral formulation (4.8) of the Cauchy problem together with the properties of U
and b. This proves proposition 4.1. 2

Remark 4.5 It is worth noting that in the case where b is simply a matrix valued poten-
tial, as it is the case in equation (3.30), the solutions to (4.2) propagate at a finite speed
with the same bound on the propagation speed as the solutions to (4.3). This can be proved
by considering the case where the initial data u0 is compactly supported and restricting the
functional S to the closed subspace Es,T,u0

of C([s, T ];L2(Σ)), made of elements u such
that Supp(u(s)) ⊂ Supp(u0) and the support of u propagates at a speed less than C̃(t) at
each time t. This subset is stable under S thanks to the bound on the propagation speed
for (4.3) and S is a strict contraction for |T − s| small enough on Es,T,u0

∩ Bs,T,u0
which

is not empty. This shows that the fixed point of S in C([s, T ];L2(Σ)) belongs to Es,T,u0

and entails the propagation of the solutions to (4.2) at a speed lower than C̃(t).

Proof of theorems 2 and 3 : As in the proof of theorem 1, we prove a general result for
first order symmetric hyperbolic systems on R× Σ :

Proposition 4.2 We consider the same first order symmetric hyperbolic system (4.2) as
for proposition 4.1.
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1. If the coefficients of the equation satisfy : ai ∈ C (Rt; Cp
b (Σ;Mn(C))), for some

p ∈ N∗, and b ∈ L1
loc (Rt;L(Hp(Σ;Cn))), then the propagator for equation (4.2)

satisfies
V is strongly continuous on R2

t,s to L (Hp(Σ;Cn)) . (4.11)

If moreover ai ∈ Cl
(

Rt; Cp−l
b (Σ;Mn(C))

)

for all l ∈ N such that 0 ≤ l ≤ p and we

also assume b ∈ Cl
(

Rt;L(Hp−l(Σ;Cn);Hp−l−1(Σ;Cn))
)

for all l ∈ N, 0 ≤ l ≤ p− 1,
then for any initial time s ∈ R and any initial data u0 ∈ Hp(Σ;Cn), the solution u
to (4.2) associated with s and u0 satisfies

u ∈ Cl
(

Rt;H
p−l(Σ;Cn)

)

, ∀l; 0 ≤ l ≤ p. (4.12)

2. Given ρ ∈ R, if ai ∈ C (Rt; C1
b (Σ;Mn(C))) and b ∈ L1

loc

(

Rt;L(L2
ρ(Σ;Cn))

)

, for
any initial time s ∈ R and any initial data u0 ∈ L2

ρ(Σ;Cn), equation (4.2) has a

unique solution u ∈ C
(

Rt;L
2
ρ(Σ;Cn)

)

such that u(s) = u0. Hence the propagator
for equation (4.2) can be defined on L2

ρ(Σ;Cn) and satisfies

V is strongly continuous on R2
t,s to L

(

L2
ρ(Σ;Cn)

)

. (4.13)

3. Let us consider ν < 0, k ∈ N, k ≥ 3, ρ ∈ R and m ∈ N, m ≤ k. We also consider
three fixed hermitian matrices a1

0, a
2
0, a

3
0 ∈ Mn(C), corresponding to the limits at

spacelike infinity of a1, a2, a3. If we assume that ai − ai
0 ∈ C

(

Rt;H
k
ν (Σ;Mn(C))

)

and b ∈ L1
loc

(

Rt;L(Hm
ρ (Σ;Cn))

)

, then

V is strongly continuous on R2
t,s to L

(

Hm
ρ (Σ;Cn)

)

. (4.14)

If moreover we suppose that ai − ai
0 ∈ Cl

(

Rt;H
k−l
ν (Σ;Mn(C))

)

for all l ∈ N, 0 ≤
l ≤ k and b ∈ Cl

(

Rt;L(Hm−l
ρ (Σ;Cn);Hm−l−1

ρ (Σ;Cn))
)

for all l ∈ N, 0 ≤ l ≤ m− 1,
then for any initial data u0 ∈ Hm

ρ (Σ;Cn) and any initial time s ∈ R, the solution u
to (4.2) associated with s and u0 satisfies

u ∈ Cl
(

Rt;H
m−l
ρ (Σ;Cn)

)

, ∀l; 0 ≤ l ≤ m. (4.15)

4. This last part extends a result given in [62], p. 364. Similarly to part 3, we consider
k ∈ N, k ≥ 3, m ∈ N, m ≤ k and three hermitian matrices a1

0, a
2
0, a

3
0 ∈ Mn(C). If

ai − ai
0 ∈ C

(

Rt;H
k(Σ;Mn(C))

)

and b ∈ L1
loc (Rt;L(Hm(Σ;Cn)), then

V is strongly continuous on R2
t,s to L (Hm(Σ;Cn)) . (4.16)

If moreover ai−ai
0 ∈ Cl

(

Rt;H
k−l(Σ;Mn(C))

)

for all l ∈ N such that 0 ≤ l ≤ k and
b ∈ Cl

(

Rt;L
(

Hm−l(Σ;Cn);Hm−l−1(Σ;Cn)
))

for all l ∈ N, 0 ≤ l ≤ m− 1, then for
any initial data u0 ∈ Hm(Σ;Cn) and any initial time s ∈ R, the solution u to (4.2)
associated with s and u0 satisfies

u ∈ Cl
(

Rt;H
m−l(Σ;Cn)

)

, ∀l; 0 ≤ l ≤ m. (4.17)
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It is easy to show that proposition 4.2 entails theorems 2 and 3. In theorem 2, the
regularity of the metric implies that the coefficients of the Dirac equation satisfy

N , Ai ∈ Cl
(

Rt; Ck−l
b (Σ)

)

, ∀l; 0 ≤ l ≤ k,

N√
2

(

B − imγ0
)

∈ Cl
(

Rt; Ck−l−1
b (Σ;M4(C))

)

, ∀l; 0 ≤ l ≤ k − 1

and
Cl
(

Rt; Ck−l−1
b (Σ;M4(C))

)

↪→ Cl
(

Rt;L
(

Hk−l(Σ;C4);Hk−l−1(Σ;C4)
))

.

Hence, applying point 1 of proposition 4.2 gives the result and theorem 2 is proved. 2

In theorem 3, for all ν > max(δ,−1), we have for a = 1, 2, 3

N −
√

2 ∈ Cl
(

Rt;H
k−l
ν (Σ)

)

, ∀l; 0 ≤ l ≤ k, (4.18)
N√
2
Aa − Aa

0 ∈ Cl
(

Rt;H
k−l
ν (Σ)

)

, ∀l; 0 ≤ l ≤ k, (4.19)

B ∈ Cl
(

Rt;H
k−l−1
ν (Σ)

)

, ∀l; 0 ≤ l ≤ k − 1, (4.20)

whereAa

0 are the coefficients of the first order terms of the Dirac equation on (R×Σ, dt2−h̃)
in the same coordinate basis. (4.18) and (4.19) are simple consequences of (2.18) : the
regularity of the derivatives is clear since they essentially are derivatives of the metric ;
the only slight difficulty is to show that N√

2
Aa−Aa

0 belongs to the right weighted L2 space

and this is done using the fact that g − (dt2 − h̃) tends to zero at infinity (in addition to
being in the required weighted L2 space) and doing an asymptotic expansion at infinity
of N√

2
Aa − Aa

0 .
The important thing is that ν is allowed to be strictly negative. The weight ν in the

regularity of B is due to the presence of timelike derivatives of the metrics, if we had only
spacelike derivatives, the weight would be ν − 1. In order to study the regularity of the
potential, we write it as

N√
2

(

B − imγ0
)

=

(

N√
2
− 1

)

B − im

(

N√
2
− 1

)

γ0 +B − imγ0.

Using (4.18), (4.20) and the continuous multiplication property (see Y. Choquet-Bruhat
and D. Christodoulou [9])

Hs1

µ1
(Σ) ×Hs2

µ2
(Σ) ↪→ Hs

µ(Σ), for s1, s2 ≥ s, s < s1 + s2 −
3

2
, µ > µ1 + µ2 , (4.21)

we can easily show that
(

N√
2
− 1

)

B ∈ Cl
(

Rt;H
k−l−1
ν (Σ)

)

, ∀l ; 0 ≤ l ≤ k − 1.

This is done by proving that for p+ q = l ≤ k − 1, the quantity

∂p
t

(

N√
2
− 1

)

∂q
tB ∈ Cl

(

Rt;H
k−l−1
ν (Σ)

)
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which only requires k > 3/2 and ν < 0. Consequently

N√
2

(

B − imγ0
)

+ imγ0 ∈ Cl
(

Rt;H
k−l−1
ν (Σ)

)

, ∀l ; 0 ≤ l ≤ k − 1.

We then show, using (4.21) that, for l,m ∈ N, 0 ≤ l ≤ m − 1, 1 ≤ m ≤ k − 1 and for
ρ ∈ R,

Hk−l−1
ν (Σ) ↪→ L

(

Hm−l
ρ (Σ) ;Hm−l−1

ρ (Σ)
)

.

The term imγ0 being constant, we conclude that

N√
2

(

B − imγ0
)

∈ Cl
(

Rt ;L
(

Hm−l
ρ (Σ);Hm−l−1

ρ (Σ)
))

for 0 ≤ l ≤ m − 1, 1 ≤ m ≤ k − 1, ρ ∈ R. We also show in the same manner that,
provided k > 5/2,

N√
2

(

B − imγ0
)

∈ C
(

Rt ;L
(

Hm
ρ (Σ)

))

for 0 ≤ m ≤ k − 1 and ρ ∈ R. Hence, theorem 3 is a consequence of points 2 and 3 of
proposition 4.2. 2

Remark 4.6 It is easily seen that the conditions imposed on the ai’s and b in proposition
4.2 to obtain (4.15) and (4.17) are slightly too strong. However, we have chosen these con-
ditions because they arise naturally for wave equations such as Dirac or Rarita-Schwinger
and the optimal conditions would make the proposition much less readable.

Proof of proposition 4.2 : We prove the four points of the proposition only in the case of
trivial topology. Since all the spaces in which the solutions take their values have norms
defined by integrals over Σ, if the topology of Σ is not trivial we can always take advantage
of the finite propagation speed to localize the problem into the domains of dependence
of the open sets of a covering such as in proposition 4.1. In each case the norm on the
function space on Σ will be equivalent to the sum of the analogous flat norms in the sets of
the covering. Thus, the results in trivial topology can be extended to non trivial topology
in exactly the same manner as in proposition 4.1. We simply work with the equation on
Rt × R3

x:

∂u

∂t
=

3
∑

i=1

ai(t, x)
∂u

∂xi
+ b(t)u. (4.22)

We only need to establish the regularity of the propagator for equation

∂u

∂t
=

3
∑

i=1

ai(t, x)
∂u

∂xi
, (4.23)

the potential term b(t) is treated via a fixed point method. In each case, we have chosen for
b exactly the regularity required to solve the integral problem (4.8) with values in the right
space. Further, the integral formulation allows us to interpret properties (4.11), (4.13),
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(4.14) and (4.16) of the propagator V for equation (4.22) as straightforward consequences
of the same properties for the free propagator2 U and the regularity of b. In cases where
we assume more regularity on b and the ai’s, the properties (4.12), (4.15) and (4.17) of
the solution can be read immediately on equation (4.22).

Each part of the proposition is deduced from the results of proposition 4.1, either
through the use of adequate identifying operators, or, in the case of weighted Sobolev
spaces, simply by differentiating the equation.

Point 1: Since ai ∈ C (Rt; Cp
b (R

3)), p ≥ 1, we know from [32], [33] and [34] (see proof
of proposition 4.1 above) that the free propagator U exists as a bounded operator
on L2(R3) and H1(R3). The property

U strongly continuous on R2
t,s to L(Hm(R3;Cn)) (Pm)

is true for m = 0 and m = 1. We now assume p ≥ 2. If we can infer from (Pm) the
property (Pm+2), provided 0 ≤ m ≤ m + 2 ≤ p, then (4.11) is proved for U . Let
us assume (Pm) true and consider some initial data u0 ∈ Hm+2(R3;Cn) and some
initial time s ∈ R ; u being the associated solution, we put

v = (Id − ∆)u.

Id − ∆ is an isomorphism from Hσ+2(R3) onto Hσ(R3) for any σ ∈ R. Thus,
v0 := v(s) ∈ Hm(R3;Cn) and v satisfies the equation

∂v

∂t
=

3
∑

i=1

ai(t, x)
∂v

∂xi
+

3
∑

i=1

[

Id − ∆, ai(t, x)
] ∂

∂xi
(Id − ∆)−1v. (4.24)

Since ai ∈ C (Rt; Cp
b (R

3)), p ≥ 2, the commutator [Id − ∆, ai(t, x)] is of the form

[

Id − ∆, ai(t, x)
]

=
3
∑

j=1

(

cij(t, x)
∂

∂xj
+ dij(t, x)

)

where
cij ∈ C

(

Rt; Cp−1
b (R3)

)

, dij ∈ C
(

Rt; Cp−2
b (R3)

)

.

Therefore, the potential satisfies

3
∑

i=1

[

Id − ∆, ai(t, x)
] ∂

∂xi
(Id − ∆)−1 ∈ C

(

Rt;L(Hm(R3))
)

.

This together with (Pm) implies that equation (4.24) has a propagator W that is
strongly continuous on R2

t,s to L(Hm(R3)). Whence, the free propagator U can be
defined on Hm+2 by

U(t, s) = (Id − ∆)−1W(t, s)(Id − ∆)

and is strongly continuous on R2
t,s to L(Hm+2(R3)).

2see footnote 1 of this chapter.
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Point 2: Given ρ ∈ R, we use the following isomorphism between L2
ρ and L2

Φ : f 7−→
(

1 + r2
)−(ρ+ 3

2
)/2
f, Φ : L2

ρ
'−→ L2.

Given u0 ∈ L2
ρ(R

3;Cn) and s ∈ R, u ∈ C
(

Rt;L
2
ρ(R

3;Cn)
)

is a solution of (4.23) such
that u(s) = u0 if and only if v := Φ(u) ∈ C (Rt;L

2(R3;Cn)) is a solution of

∂v

∂t
=

3
∑

i=1

ai(t, x)
∂v

∂xi
+

3
∑

i=1

ai(t, x)

[

(

1 + r2
)−(ρ+ 3

2
)/2
,
∂

∂xi

]

(

1 + r2
)(ρ+ 3

2
)/2
v (4.25)

such that v(s) = v0 := Φ(u0) = (1 + r2)
−(ρ+ 3

2
)/2
u0. The commutator is simply the

smooth function
[

(

1 + r2
)−(ρ+ 3

2
)/2
,
∂

∂xi

]

= − ∂

∂xi

(

(

1 + r2
)−(ρ+ 3

2
)/2
)

= O
(

r−(ρ+ 5

2
)
)

, as r → +∞.

Therefore the potential satisfies

3
∑

i=1

ai(t, x)

[

(

1 + r2
)−(ρ+ 3

2
)/2
,
∂

∂xi

]

(

1 + r2
)(ρ+ 3

2
)/2

∈ C
(

Rt; C0
b (R

3)
)

↪→ C
(

Rt;L
(

L2(R3)
))

.

We infer that equation (4.25) has a propagator W that is strongly continuous on
R2

t,s to L (L2(R3;Cn)). This allows us to define the free propagator U on L2
ρ by

U(t, s) = Φ−1W(t, s)Φ

and it is strongly continuous on R2
t,s to L

(

L2
ρ(R

3;Cn)
)

.

Point 4: This part of the proposition will be useful for the proof of point 3, therefore we
prove it first. This is done exactly as for point 1 with the additional tool of product
theorems between Sobolev spaces. We have assumed ai − ai

0 ∈ C
(

Rt;H
k(R3;Cn)

)

with k ≥ 3. Consequently ai ∈ C (Rt; C1
b (R

3;Cn)) and thus U acts as a strongly
continuous propagator on L2 and H1. Then we use (Id − ∆)−1 to go up to H l+2

from H l, 0 ≤ l ≤ k − 2 ; the commutator [Id − ∆, ai(t, x)] is of the form

[

Id − ∆, ai(t, x)
]

=
3
∑

j=1

(

cij(t, x)
∂

∂xj
+ dij(t, x)

)

where
cij ∈ C

(

Rt;H
k−1(R3)

)

, dij ∈ C
(

Rt;H
k−2(R3)

)

.

Using the usual product rule between Sobolev spaces

Hσ1(R3) ×Hσ2(R3) ↪→ Hσ(R3), for σ1, σ2 ≥ σ, σ < σ1 + σ2 −
3

2
,
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we find that, for 0 ≤ l ≤ k − 2, using k ≥ 3 > 5/2

Hk−1(R3) ×H l(R3) ↪→ H l(R3) and Hk−2(R3) ×H l+1(R3) ↪→ H l(R3).

The conclusion is therefore the same as in point 1 :

3
∑

i=1

[

Id − ∆, ai(t, x)
] ∂

∂xi
(Id − ∆)−1 ∈ C

(

Rt;L(H l(R3))
)

and this allows us to define the propagator U on H l+2. Therefore, by induction, U
satisfies (4.16) for any m such that 0 ≤ m ≤ k and this proves the fourth part of
proposition 4.2.

Point 3: The regularity of the ai’s (Hk
ν ↪→ C1

b (R
3) since k ≥ 3 and ν < 0) and points

1 and 2 imply that we can define U as a strongly continuous propagator on L2 and
L2

ρ for any ρ ∈ R. We assume that for some integer m, 1 ≤ m ≤ k, the following
property is satisfied :

(P
m−1

) U can be defined as a strongly continuous propagator on Hp
ρ(R3) for any

ρ ∈ R and for any integer p such that 0 ≤ p ≤ m− 1.

We wish to show that (P
m−1

) implies (P
m
) ; this will prove point 3 by induction.

For a given ρ ∈ R, we establish, using (P
m−1

), that U is a strongly continuous
propagator on Hm

ρ (R3). We consider u0 ∈ Hm
comp(R

3;Cn). The finite propagation
speed and point 4 entail :

U(t, s)u0 ∈ C
(

R2
t,s;H

m
comp(R

3;Cn)
)

↪→ C
(

R2
t,s;H

m
ρ (R3;Cn)

)

.

If we prove the existence of a positive, continuous function C on R2
t,s such that, for

any u0 ∈ Hm
comp, we have

‖U(t, s)u0‖Hm
ρ
≤ C(t, s) ‖u0‖Hm

ρ
, (4.26)

this will allow us, by density of Hm
comp into Hm

ρ , to define U as a strongly continuous
propagator on Hm

ρ . Hypothesis (P
m−1

) already gives us the existence of a positive,
continuous function C1 on R2

t,s such that, for any u0 ∈ Hm
comp,

‖U(t, s)u0‖Hm−1
ρ

≤ C1(t, s) ‖u0‖Hm−1
ρ

. (4.27)

For u0 ∈ Hm
comp(R

3), we put u(t, s) = U(t, s)u0 and vj(t, s) = ∂u
∂xj (t, s) for j = 1, 2, 3.

We have vj|t=s = ∂u0

∂xj ∈ Hm−1
ρ−1 (R3) and v1, v2, v3 satisfy

∂vj

∂t
=

3
∑

i=1

ai(t, x)
∂vj

∂xi
+

3
∑

i=1

∂ai

∂xj
(t, x)vi , j = 1, 2, 3. (4.28)
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This is a system of three evolution equations whose principal part reduces to (4.23)

and which are coupled by the potentials ∂ai

∂xj . The regularity of the ai’s and the
continuous embedding (4.21) imply (since k > 5/2 and ν < 1)

∂ai

∂xj
∈ C

(

Rt;H
k−1
ν−1(R3;Mn(C))

)

↪→ C
(

Rt;L
(

Hm−1
ρ−1 (R3;Cn)

))

.

This property together with the assumption that the propagator U for (4.23) is
strongly continuous on R2

t,s to L
(

Hm−1
ρ−1 (R3)

)

entail that the system (4.28) admits

a strongly continuous propagator on
(

Hm−1
ρ−1 (R3;Cn)

)3
(this is proved using a fixed

point method). An immediate consequence is the existence of a positive, continuous
function C2 on R2

t,s, such that, for any u0 ∈ Hm
comp(R

3;Cn),

3
∑

i=1

∥

∥

∥

∥

∂

∂xi
U(t, s)u0

∥

∥

∥

∥

Hm−1
ρ−1

≤ C2(t, s)
3
∑

i=1

∥

∥

∥

∥

∂

∂xi
u0

∥

∥

∥

∥

Hm−1
ρ−1

. (4.29)

Putting (4.27) and (4.29) together gives us (4.26) and concludes the proof of propo-
sition 4.2. 2

Proof of theorem 4 : We apply the result of lemma 3.3 to obtain the conservation of
the charge. Let us consider some initial data Ψ0 ∈ H1(Σ;SDirac) with compact sup-
port on Σ and some initial time s. Let Ψ be the corresponding solution to (3.4) in
C(Rt;H

1(Σ;SDirac)) ∩ C1(Rt;L
2(Σ;SDirac)). For T > s, we integrate the closed 3-form

ω = ∗Uadx
a on a closed surface σ made of a timelike tube, large enough not to intersect

the support of the solution on the time interval [s, T ], and of the spacelike hypersurfaces
Σs = {t = s} and ΣT = {t = T}. Such a surface exists thanks to the finite propaga-
tion speed and the integration of ω over σ has a meaning because the vector field Ua, or
equivalently the 3-form ω, belongs to W 1,1

loc (Rt ×Σ) (the Sobolev space on Rt ×Σ of func-
tions in L1

loc with their first derivative in L1
loc) ; therefore one can apply Stoke’s theorem

to evaluate the integral of ω over the compact, piecewise C1, hypersurface σ. We have
proved the closedness of ω in lemma 3.3. We obtain

∫

ΣT

1√
2
T aUadVolh(T ) −

∫

Σs

1√
2
T aUadVolh(s) = 0

since 1√
2
T a and − 1√

2
T a are the outgoing unit normals to σ on ΣT and Σs respectively.

We have
T aUa = TAA′

φAφ̄A′ + TAA′χA′

χ̄A = 〈Ψ,Ψ〉 = |Ψ|2.
Similar arguments can of course be used for T < s. This proves the conservation of E(t)
for solutions associated with initial data in H1

comp(Σ). The result then carries over to
solutions with values in L2(Σ) by continuity on L2 of the propagator for equation (3.4)
and by density of H1

comp in L2. This concludes the proof of theorem 4. 2
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Chapter 5

The case of the Schwarzschild
geometry

The space-time containing only a spherically symmetric uncharged black hole of mass
M > 0 is described by the Schwarzschild metric whose expression in the Schwarzschild
coordinates t, r, θ, ϕ on Rt×]0,+∞[r×S2

θ,ϕ, is given by

gabdx
adxb =

(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)−1

dr2 − r2dω2 (5.1)

where dω2 is the euclidian metric on S2:

dω2 = dθ2 + sin2 θdϕ2.

Putting

F (r) = 1 − 2M/r

we have

gabdx
adxb = Fdt2 − F−1dr2 − r2dω2. (5.2)

This metric has two singularities : the horizon {r = 2M} is only a coordinate singularity,
the metric can be extended analytically through it, and the origin {r = 0} which is a true
curvature singularity. The horizon separates the exterior of the black hole {r > 2M},
which is a stationary domain where ∂/∂t is timelike and ∂/∂r spacelike, from the interior
{r < 2M}, a dynamic region where ∂/∂t is spacelike, ∂/∂r timelike, and the inertial
frames are dragged towards the singularity at {r = 0} (the time orientation implicit in
this description is such that the timelike vector field ∂/∂r is past pointing).

5.1 The exterior of the black hole

We first consider the Schwarzschild geometry from the point of view of an observer static
with respect to infinity. Such observers only see the exterior of the black hole and their

49
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perception of space-time is described by the time function t of the Schwarzschild coor-
dinates outside the black hole. To their eyes, light rays falling into the black hole slow
down infinitely as they approach the horizon and never cross it. One way of seeing this
is to calculate the radial null geodesics. Introducing the Regge-Wheeler variable

r∗ = r + 2MLog(r − 2M)

we have
dr

dr∗
= F

and the metric g takes the form

g = F
(

dt2 − dr2
∗
)

− r2dω2.

The radial null geodesics are the straight lines

ω = ω0 , t = ±r∗ + C , C ∈ R , ω0 ∈ S2

and the horizon {r = 2M} (corresponding to r∗ → −∞) is reached in infinite time
t. A remarkable consequence of this property is that if we choose for Dirac’s equation
(or Maxwell’s, or the Klein-Gordon equation alike) some initial data whose support is
contained in {r ≥ 2M + ε}, ε > 0, then the support of the solution will only reach the
horizon when t becomes infinite.

We shall see that results similar to those of the previous section are still valid in this
framework, but before we can express them properly, we need to study the geometry of
the spacelike slices.

5.1.1 The spacelike geometry of the exterior of the black hole

The exterior of the black hole is globally hyperbolic. We consider the foliation induced
by the time function t, i.e. the slices are

Σt = {t}×]2M,+∞[r×S2
ω, t ∈ R,

with the induced Riemannian metric

h = F−1dr2 + r2dω2. (5.3)

The 3+1 decomposition of the geometry is given by (calling M the exterior of the black
hole) :

M = Rt × Σ , Σ =]2M,+∞[r×S2
ω , g = Fdt2 − h =

N2

2
dt2 − h (5.4)

with the lapse function N =
√

2F 1/2. The exterior of the black hole is static : ∂
∂t

is a
Killing vector field (since g does not depend on t), is timelike outside the black hole and
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is everywhere orthogonal to the Cauchy hypersurfaces Σt. The time orientation is chosen
by deciding that ∂

∂t
is future pointing and the normalized vector field T a is then

T a∂a =
√

2F−1/2 ∂

∂t
=

2

N

∂

∂t
.

We consider a generic spacelike slice (Σ, h). The metric h appears singular at r = 2M .
This is merely due to the choice of coordinates ; introducing as the new radial variable
u(r) the h-distance to the horizon, we show that (Σ, h) is a smooth manifold and that the
horizon is a smooth boundary.

Given p = (R,ω) ∈ Σ, the h-distance from p to the horizon H = {r = 2M} × S2
ω is

given by

u(R) =

∫

[2M,R]

F−1/2dr =

∫

[2M,R]

√
r√

r − 2M
dr . (5.5)

This distance is finite and H thus appears as the boundary of (Σ, h). Since

du

dr
= F−1/2,

the metric h can be written as
h = du2 + r2dω2 (5.6)

and
Σ =]0,+∞[u×S2

ω .

The function u(r) is continuous and strictly increasing from [2M,+∞[ onto [0,+∞[, it is
C∞ on ]2M,+∞[ but it is not differentiable at 2M . However, the inverse function satisfies

Lemma 5.1 The function u 7−→ r(u) is C∞ on [0,+∞[ and all its derivatives are uni-
formly bounded on [0,+∞[. In particular, the first derivative dr

du
= F 1/2 (and therefore

also the lapse function) is uniformly bounded as well as all its derivatives on [0,+∞[.

Proof of lemma 5.1 : the first and second derivatives F 1/2 and M/r2 are continuous on

[0,+∞[u whence r is C2 on [0,+∞[u. If r is Ck on [0,+∞[u, then so is the second derivative
and the lemma is thus proved by induction. 2

This entails that h is smooth on Σ̄ = [0,+∞[u×S2
ω ; (Σ̄, h) is a smooth manifold with

boundary. On (Σ, h), we introduce Sobolev spaces with all traces equal to zero at the
boundary :

Definition 5.1 Hm
0 (Σ), m ∈ N, is the completion of C∞

0 (Σ) in the Sobolev norm

‖f‖Hm(Σ) =

(

∫

Σ

m
∑

p=0

〈Dpf,Dpf〉 dVolh

)1/2

(5.7)

where D, < ., . > and dVolh are the covariant derivative, the positive definite inner product
on tensors and spinors at a point and the volume element on Σ induced by h. Note that on
spinors, < ., . > is nothing but the hermitian inner product induced by T a. The subscript
0 in Hm

0 (Σ) must not be mistaken for a weight subscript ; weighted Sobolev spaces on Σ
with zero traces will be denoted Hm

0,δ(Σ). H0
0 (Σ) is simply L2(Σ, h).
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We wish to prove that the Cauchy problem for the Dirac equation is well-posed in these
spaces. To this effect, we establish that the successive domains in L2 of the Dirac operator
on Σ with homogeneous boundary conditions at the horizon are the Sobolev spacesHm

0 (Σ)
and that the norms are equivalent.

We consider D
Σ

the Dirac operator associated with the Levi-Civita connection on
(Σ, h). It is formally self-adjoint on L2(Σt ;SDirac) and satisfies

D
Σ

∗ D
Σ
= D

Σ

2 = D∗ D = −∆h . (5.8)

The notation D for the Levi-Civita connection on (Σ, h) is justified by the fact that the
exterior of the black hole is static : the extrinsic curvature of the slices Σt is zero, whence
the projection on Σ of the space-time connection (Da = −ha

b∇b) coincides with the Levi-
Civita connection on (Σ, h). Consequently, D∗ D = −∆h and D

Σ
coincides with the Dirac-

Witten operator on Σ embedded in (M, g). Also, the endomorphism R vanishes here
since Gab = 0 (Schwarzschild’s space-time is a solution of the Einstein vacuum equations)
and (5.8) is therefore obtained from (3.27). Note that the equality (5.8) is true when
applied to Ψ ∈ C∞

0 (Σ ;SDirac). The coefficients of D
Σ

and ∆h being smooth on Σ, these
operators are continuous on D′ (Σ ;SDirac), the space of Dirac spinor valued distributions
on Σ (that is, the dual of C∞

0 (Σ ;SDirac)). Hence, (5.8) naturally extends by continuity1

to an equality of operators acting on D′ (Σ ;SDirac), and in particular on any Sobolev-type
space on Σ. The norm in Hk

0 (Σ) can be defined using D
Σ

in the following manner :

Proposition 5.1 We consider on Hk
0 (Σ ;SDirac) the following norm

|‖Ψ|‖k =

(

k
∑

p=0

∫

Σ

〈D
Σ

pΨ,D
Σ

pΨ〉 dVolh

)1/2

. (5.9)

The norms ‖.‖Hk and |‖.|‖k are equivalent on Hk
0 (Σ ;SDirac).

Remark 5.1 We consider the operator

D/ := e0.DΣ
, e0 = F−1/2 ∂

∂t
=

1√
2
T a∂a . (5.10)

1One can also think directly in terms of duality. There are different ways of defining the duality
product between D′ (Σ ;SDirac) and C∞

0
(Σ ;SDirac). The most natural is to construct it as an extension

of the positive definite innner product on L2 (Σ ;SDirac) without complex conjugation. More precisely, to
a locally integrable Dirac spinor field Ψ on Σ we associate the distribution TΨ, usually simply denoted
Ψ, in the following manner : for all Φ ∈ C∞

0
(Σ ;SDirac),

〈Ψ,Φ〉D′,C∞

0

=

∫

Σ

〈

Ψ(x),Φ(x)
〉

dVolh =

∫

Σ

Φ†(x)Ψ(x)dVolh =

∫

Σ

tΦ(x)Ψ(x)dVolh .

Thus, considering a differential operator L on Σ, i.e. involving only derivatives tangent to Σ, its transposed
for the above duality product will be L∗, where L∗ is its formal adjoint for the positive definite inner
product on L2 (Σ ;SDirac). Hence the equality (5.8), where the operators are considered as acting on
C∞
0

(Σ ;SDirac), immediately entails by definition of D′ (Σ ;SDirac), the same equality where the operators
are now considered as acting on D′ (Σ ;SDirac). Indeed, all the operators involved being formally self-
adjoint, we obtain by duality the complex conjugate of (5.8) which is equivalent to (5.8).
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D/ is formally skew-adjoint on L2(Σ ;SDirac) and satisfies

D/ ∗ D/ = −D/ 2 = D
Σ

2 = −∆h . (5.11)

Moreover, the norm |‖.|‖k can be expressed using D/ as well as D
Σ

; we have for all Ψ in
Hk

0 (Σ ;SDirac)

|‖Ψ|‖k =

(

k
∑

p=0

∫

Σ

〈D/ pΨ,D/ pΨ〉 dVolh

)1/2

. (5.12)

All this is an immediate consequence of the fact that e0. is hermitian for < ., . >, anti-
commutes with D

Σ
and e0.e0. = Id. Note that restricting D/ to S∗ and S̄ respectively, we

get similar results for ID and ID∗.

Proof of proposition 5.1 : The Bochner-Lichnerowicz-Weitzenböck formula (5.8) gives im-
mediately that for Ψ ∈ C∞

0 (Σ ;SDirac), and by density for Ψ ∈ H1
0 (Σ ;SDirac), we have

‖D
Σ
Ψ‖L2(Σ) = ‖DΨ‖L2(Σ)

and therefore ‖Ψ‖H1 = |‖Ψ|‖1. In order to prove the equivalence of higher order norms
using this first result, we prove the following lemma :

Lemma 5.2 For any k ∈ N, there exist constants 0 < C1 < C2 < +∞ such that, for all
Φ ∈ Hk+2

0 (Σ ;SDirac)

C1‖Φ‖2
Hk+2 ≤ ‖Φ‖2

Hk + ‖∆hΦ‖2
Hk ≤ C2‖Φ‖2

Hk+2 . (5.13)

Proof of lemma 5.2 : Let us consider a smooth Riemannian manifold (Σ̃, h̃) such that

Σ̃ = Σ ∪ K, K compact, Σ̃ topologically trivial and h̃|Σ = h. (Σ̃, h̃) is then a smooth
asymptotically flat Riemannian manifold of trivial topology. This entails that Σ̃ ' R3.
Parametrizing Σ̃ by R3, there exist 0 < K1 < K2 < +∞ such that (h̃ab and h̃ab being
here considered as 3 × 3 matrices)

K1 ≤ det h̃ ≤ K2 , K1Id3 ≤ h̃ab ≤ K2Id3 , K1Id3 ≤ h̃ab ≤ K2Id3 .

The norms in the Sobolev spaces Hk(Σ̃ ; h̃) are equivalent to the norms in the usual
Sobolev spaces on R3. The Laplacian ∆h̃ acting on Dirac spinors is given (with respect
to a spin-frame) by

∆h̃ =

[

3
∑

a,b=1

(

det h̃
)−1/2 ∂

∂xa

(

(

det h̃
)1/2

h̃ab
∂

∂xb

)

]

Id4 + connection terms

=

(

3
∑

a,b=1

h̃ab
∂2

∂xa∂xb

)

Id4 +R ,
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the rest R being a first order differential operator whose coefficients are first or second
order derivatives of the metric h̃ and are therefore in L∞(Σ̃) as well as all their derivatives.
And of course ∆h̃|Σ = ∆h.

The first immediate consequence is the existence of 0 < C2 < +∞ such that, for any
Φ ∈ C∞

0 (Σ̃ ;SDirac)
‖Φ‖2

Hk(Σ̃)
+ ‖∆h̃Φ‖2

Hk(Σ̃)
≤ C2‖Φ‖2

Hk+2(Σ̃)
.

Choosing only spinor fields Φ in C∞
0 (Σ ;SDirac), we obtain one of the two inequalities

(5.13).
The second consequence is that, via a choice of spin-frame, Id−∆h̃ is an isomorphism

from Hk+2(R3 ;C4) onto Hk(R3 ;C4) for any integer k, since (Id − ∆h̃)
−1 is a pseudo-

differential operator of order −2. Therefore Id−∆h̃ is an isomorphism from Hk+2(Σ̃ ;C4)
onto Hk(Σ̃ ;C4) for any k ∈ N (for a slightly weaker result implying also the second
inequality (5.13), see for example [27], p. 197, corollary 8.4.7).

We conclude that for each k ∈ N there exists 0 < C̃1 < +∞ such that, for any
Φ ∈ Hk+2(Σ̃ ;SDirac)

C̃1‖Φ‖Hk+2(Σ̃) ≤ ‖(Id − ∆h̃)Φ‖Hk(Σ̃) ≤ ‖Φ‖Hk(Σ̃) + ‖∆h̃Φ‖Hk(Σ̃) .

Choosing Φ ∈ C∞
0 (Σ ;SDirac) gives the other one of the two inequalities (5.13) and proves

lemma 5.2. 2

We now proceed to proving proposition 5.1 using lemma 5.2. We already know that

‖.‖L2(Σ) = |‖.|‖0 , ‖.‖H1(Σ) = |‖.|‖1 .

Lemma 5.2 for k = 0 gives the following

C1‖Φ‖2
H2(Σ) ≤ ‖D

Σ

2Φ‖2
L2(Σ) + ‖Φ‖2

L2(Σ) ≤ C2‖Φ‖2
H2(Σ) , for all Φ ∈ H2

0 (Σ).

Hence, the norm

(

‖Φ‖2
H2(Σ) + ‖D

Σ
Φ‖2

L2(Σ)

)1/2

=
(

‖Φ‖2
H2(Σ) + ‖DΦ‖2

L2(Σ)

)1/2

,

(which is clearly equivalent to ‖.‖H2(Σ)) is equivalent to |‖.|‖2. This proves the result of
proposition 5.1 for k = 2. We now suppose this result to be true for 0 ≤ k ≤ m, m ≥ 2
and we prove it for k = m+ 1. Lemma 5.2 gives

C1‖Φ‖2
Hm+1(Σ) ≤ ‖Φ‖2

Hm−1(Σ) + ‖D
Σ

2Φ‖2
Hm−1(Σ) ≤ C2‖Φ‖2

Hm+1(Σ) , for all Φ ∈ Hm+1
0 (Σ).

Moreover, we have, using the equivalence for k = m− 1,

‖Φ‖2
Hm−1(Σ) + ‖D

Σ

2Φ‖2
Hm−1(Σ)

' ‖Φ‖2
L2(Σ) + ‖D

Σ
Φ‖2

L2(Σ) + 2
m−1
∑

p=2

‖D
Σ

pΦ‖2
L2(Σ) + ‖D

Σ

mΦ‖2
L2(Σ) + ‖D

Σ

m+1Φ‖2
L2(Σ) .

This proves the equivalence for k = m+ 1 and proposition 5.1 follows by induction. 2
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5.1.2 The global exterior Cauchy problem

We now prove the well-posedness of the Cauchy problem for the Dirac equation in Sobolev
and weighted Sobolev spaces outside the black hole. We have already introduced the
Sobolev spaces Hk

0 (Σ), k ∈ N, we now define weighted Sobolev spaces with zero traces at
the horizon :

Definition 5.2 For k ∈ N, ρ ∈ R, the weighted Sobolev space with zero traces at the
horizon : Hk

0,ρ(Σ), is the completion of C∞
0 (Σ) in the norm

‖f‖Hk
ρ (Σ) =

(

k
∑

p=0

∫

Σ

(

1 + u2
)−ρ− 3

2
+p 〈Dpf,Dpf〉 dVolh

)1/2

, (5.14)

u being the h-distance to the horizon introduced earlier. We could replace 1 + u2 by r2

for example without changing the function space, we would simply replace the norm by an
equivalent norm since r ' u at infinity.

The following theorem is the analogue of theorems 1 to 4 in the Schwarzschild space-time
described using the point of view of observers static with respect to infinity :

Theorem 5 1. For any initial data Ψ0 ∈ L2(Σ ;SDirac), the Dirac equation outside the
black hole has a unique solution Ψ ∈ C (Rt ;L2(Σ ;SDirac)) such that Ψ|t=0 = Ψ0.
Moreover, the evolution is unitary in L2(Σ), i.e.

‖Ψ(t)‖L2(Σ) = ‖Ψ0‖L2(Σ) , for all t ∈ R .

The propagator for the Dirac equation outside the black hole, U(t, s), only depends
on t − s since the space-time is static. We denote it U(t − s) and t 7→ U(t) is a
one-parameter group of unitary operators on L2(Σ;SDirac).

2. If Ψ0 ∈ Hk
0 (Σ ;SDirac), k ∈ N, the associated solution Ψ satisfies

Ψ ∈
k
⋂

l=0

Cl
(

Rt ;Hk−l
0 (Σ ;SDirac)

)

,

U(t) is for all k ∈ N a strongly continuous one-parameter group of bounded operators
on Hk

0 (Σ ;SDirac).

3. For any initial data Ψ0 ∈ L2
ρ(Σ ;SDirac), ρ ∈ R, the Dirac equation outside the black

hole has a unique solution Ψ ∈ C
(

Rt ;L2
ρ(Σ ;SDirac)

)

such that Ψ|t=0 = Ψ0. U(t)
is a strongly continuous one-parameter group of bounded operators on L2

ρ(Σ ;SDirac)
for all ρ ∈ R.

4. If Ψ0 ∈ Hk
0,ρ(Σ ;SDirac), k ∈ N, ρ ∈ R, the associated solution Ψ satisfies

Ψ ∈
k
⋂

l=0

Cl
(

Rt ;Hk−l
0,ρ (Σ ;SDirac)

)

,
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U(t) is for all k ∈ N, ρ ∈ R, a strongly continuous one-parameter group of bounded
operators on Hk

0,ρ(Σ ;SDirac).

Proof of theorem 5 : With the notations we have introduced in the previous paragraph,
the Dirac equation outside the black hole takes the form

∇e0
Ψ = −D/Ψ − ime0.Ψ .

We choose a spin-frame {oA, ιA} adapted to the foliation ; γ0 is then given as the constant
hermitian matrix

γ0 = i

(

0 Id2

−Id2 0

)

and expressing more explicitely the timelike derivative, we obtain

∂Ψ

∂t
= − N√

2

(

D/Ψ + imγ0Ψ +BΨ
)

(5.15)

where the matrix B (not quite the same as the matrix B of chapters 3 and 4) contains
the connection terms coming from the time derivative ; B is of course independent of
t. In appendix A, we describe more precisely the type of spin-frame in which we work
and we calculate a general expression of the matrix B in such a spin-frame ; this general
calculation is valid for both Schwarzschild and Kerr metrics. We also give an explicit
expression of B in Schwarzschild’s space-time for a particular choice of spin-frame already
used in [48]. Suffice it to say here that for our choice of spin-frame, we have the following
result, proved in appendix A :

Lemma 5.3 The coefficients of the matrix N√
2
B are uniformly bounded on Σ̄ as well as

all their derivatives.

This will be useful for controlling the Sobolev norms of the solutions.

1. The Cauchy problem in L2(Σ) : The essential observation here is that if we choose
the initial data Ψ0 with compact support in Σ, the support of the solution will
propagate along null geodesics (i.e. characteristic lines) and will only touch the
horizon as t tends to infinity (according to the remark at the beginning of this
section). Therefore, we will never see the lapse function reach the value zero and
we can apply the results of theorem 1. Let us develop this argument more precisely.
We use the Schwarzschild coordinates (t, r, ω) for simplicity. For ε > 0, we consider
on Rt × [0,+∞[r×S2

ω a smooth Lorentzian metric εg, which coincides with g on
Rt × [2M + ε,+∞[r×S2

ω, i.e. “outside the black hole and not too close to the
horizon”. For the background metric on Σ̃ = [0,+∞[r×S2

ω, we simply choose the
euclician metric

h̃ = dr2 + r2dω2
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and we compare εg with a metric g̃ on R × Σ̃ which, outside a compact set, is the
beginning of the expansion in 1/r of the Schwarzschild metric (this metric has the
form chosen for background Lorentzian metrics in definition 2.1) :

g̃ =

(

1 − ρ(r)
2M

r

)

dt2 −
(

1 + ρ(r)
2M

r

)

dr2 − r2dω2

where ρ is a smooth cut-off function on [0,+∞[, identically zero on [0, 3M ] and
equal to 1 on [4M,+∞[ (for example). We see that for each ε > 0, εg is of class
(∞, δ) on R× Σ̃ for any δ > −2 since

D̃l ( εg − g̃) = O
(

r−2−l
)

, r → +∞ , ∀l ∈ N ,

where D̃ is the Levi-Civita connection on (Σ̃, h̃), i.e. the euclidian connection on
R3.

Hence, it turns out that for any ε > 0, the metric εg fits in our classes of asymp-
totically flat (and even strongly asymptotically flat) space-times and the results
of theorem 1 can be applied to the space-times (Rt × Σ̃, εg), ε > 0. Thus, if we
consider some initial data Ψ0 in L2(Σ̃ ;SDirac), the Dirac equation on (Rt × Σ̃, εg)

has a unique solution Ψ ∈ C
(

Rt ;L2(Σ̃ ;SDirac)
)

such that Ψ(0) = Ψ0. Moreover,

the norm of Ψ(t) in L2(Σ̃t) is constant throughout time. We now consider Ψ0 with
compact support in ]2M,+∞[r×S2

ω and we choose ε > 0 small enough so that

[0, 2M + ε]r × S2
ω

⋂

SuppΨ0 = ∅ .

The solution Ψ(t) coincides on ]2M,+∞[r×S2
ω with a physical solution to the Dirac

equation outside the black hole on the time interval [T ε
1 , T

ε
2 ] 3 0 during which the

support of Ψ does not touch [0, 2M + ε]r × S2
ω. As ε → 0, we have T ε

1 → −∞
and T ε

2 → +∞. This entails that for any initial data Ψ0 ∈ L2(Σ ;SDirac) with
compact support in Σ, the Dirac equation on (Rt × Σ, g) has a unique solution
Ψ ∈ C (Rt ;L2(Σ ;SDirac)) such that Ψ(0) = Ψ0 and we have

‖Ψ(t)‖L2(Σ) =

∫

Σ

〈Ψ(t),Ψ(t)〉 dVolh = ‖Ψ0‖L2(Σ) .

Whence the first part of theorem 5 follows by density.

2. The Cauchy problem in Sobolev spaces : We consider Ψ0 ∈ C∞
0 (Σ ;SDirac). Applying

the results of theorem 2 to the metrics εg, ε > 0, we see that the associated solution
Ψ is in C∞ (Rt ; C∞

0 (Σ ;SDirac)). We show by induction that all the norms |‖Ψ(t)|‖k

are controlled in the following manner : there exist αk, βk > 0 independent of Ψ0

such that
|‖Ψ(t)|‖k ≤ αke

βk|t||‖Ψ0|‖k .

This will prove this part of theorem 5 by density.
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To this effect, we apply D/ k to the expression (5.15) of the Dirac equation for our
choice of spin-frame. We get

∂
∂t

(

D/ kΨ
)

= − N√
2

(

D/
(

D/ kΨ
)

+ imγ0D/ kΨ +BD/ kΨ
)

+
[

D/ k,− N√
2

]

D/Ψ +
[

D/ k,− N√
2
imγ0

]

Ψ +
[

D/ k,− N√
2
B
]

Ψ . (5.16)

We see that equation (5.16) has the form

∂

∂t

(

D/ kΨ
)

= − N√
2

(

D/ + imγ0 +B
)

D/ kΨ +G(t)

where the term G(t) satisfies (using lemma 5.1, lemma 5.3 and then the norm
equivalence of proposition 5.1)

‖G(t)‖L2(Σ) ≤ C‖Ψ(t)‖Hk ≤ C ′|‖Ψ(t)|‖k

with C and C ′ independent of t and Ψ. We shall express |‖Ψ(t)|‖k using D/ instead
of D

Σ
(according to remark 5.1)

|‖Ψ(t)|‖2
k =

k
∑

p=0

‖D/ pΨ(t)‖2
L2(Σ) .

Denoting U(t) the propagator for the Dirac equation outside the black hole, we have
the following expression for D/ kΨ(t) :

D/ kΨ(t) = U(t)D/ kΨ0 +

∫ t

0

U(t− s)G(s)ds .

This yields the following estimate

∥

∥

∥D/ kΨ(t)
∥

∥

∥

L2
≤
∥

∥

∥D/ kΨ0

∥

∥

∥

L2
+ C ′

∫ |t|

0

|‖Ψ(s)|‖kds

≤
∥

∥

∥
D/ kΨ0

∥

∥

∥

L2
+ C ′

∫ |t|

0

∥

∥

∥
D/ kΨ(s)

∥

∥

∥

L2
ds+ C ′

∫ |t|

0

|‖Ψ(s)|‖k−1ds .

Gronwall’s inequality then implies

∥

∥

∥D/ kΨ(t)
∥

∥

∥

L2
≤
(

∥

∥

∥D/ kΨ0

∥

∥

∥

L2
+ C ′

∫ |t|

0

|‖Ψ(s)|‖k−1ds

)

eC′|t|.

Therefore, assuming that we have already established the existence of αk−1, βk−1 > 0
independent of Ψ0 such that

|‖Ψ(t)|‖k−1 ≤ αk−1e
βk−1|t||‖Ψ0|‖k−1 for all t ∈ R,
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we have
∥

∥

∥
D/ kΨ(t)

∥

∥

∥

L2(Σ)
≤
(∥

∥

∥
D/ kΨ0

∥

∥

∥

L2
+ C ′|t|αk−1e

βk−1|t||‖Ψ0|‖k−1

)

eC′|t|

and we infer the existence of αk, βk > 0, independent of Ψ0 such that

|‖Ψ(t)|‖k ≤ αke
βk|t||‖Ψ0|‖k for all t ∈ R. (5.17)

Hence, starting from the conservation of the L2 norm of the solutions, we prove by
induction that inequality (5.17) is true for all k ∈ N and for all Ψ0 ∈ C∞

0 (Σ ;SDirac)
with constants αk, βk independent of Ψ0. Of course, inequality (5.17) is very crude,
but it is enough to obtain the qualitative informations we need.

We now consider Ψ0 ∈ Hk
0 (Σ ;SDirac) and a sequence Ψn

0 ∈ C∞
0 (Σ ;SDirac) which

converges towards Ψ0 in Hk
0 (Σ). (5.17) and the linearity of the Dirac equation imply

that the associated solutions Ψn converge in C(Rt ;Hk
0 (Σ)). Since Ψn converges

towards Ψ in C(Rt ;L2(Σ)) by continuity of the propagator on L2, we conclude that
Ψ ∈ C(Rt ;Hk

0 (Σ)). We can read directly on the equation the additional regularities
of Ψ :

Ψ ∈
k
⋂

l=0

Cl
(

Rt ;Hk−l
0 (Σ ;SDirac)

)

.

Moreover, by continuity, (5.17) is still valid for solutions with values in Hk
0 (Σ) and

this proves that U(t) is a strongly continuous one parameter group of bounded
operators on Hk

0 (Σ) for all k ∈ N. This concludes the proof of the second part of
theorem 5.

3. The Cauchy problem in weighted L2 spaces : We do not detail the proof of the third
part of theorem 5 ; it is identical to the proof of the fourth part given below, without
the additional complication due to the control of the regularity.

4. The Cauchy problem in weighted Sobolev spaces : The results of theorem 3 con-
cerning the well-posedness of the Cauchy problem in weighted Sobolev spaces on
space-times of class (k, δ) together with the second part of theorem 5 are sufficient
to prove the fourth part of theorem 5. Let us consider Ψ0 ∈ Hk

0,ρ(Σ ;SDirac), k ∈ N,
ρ ∈ R. We introduce a cut-off function χ ∈ C∞(Σ), χ ≡ 0 for u > 2 and χ ≡ 1 for
u < 1 (for example), where u is the h-distance to the horizon H = ∂Σ. We split
the initial data Ψ0 into a part localized near the horizon and an “asymptotic” part
which does not touch H :

Ψ0 = Φ0 + Θ0 , Φ0 := χΨ0 .

Then Φ0 ∈ Hk
0 (Σ ;SDirac) and the solution Φ to the Dirac equation outside the black

hole associated with Φ0 satisfies

Φ ∈ Cl
(

Rt ;Hk−l
0 (Σ)

)

, 0 ≤ l ≤ k.
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Moreover, the support of Φ propagates at finite speed, i.e. there exists a smooth
increasing function d on [0,+∞[ satisfying

d(0) = 2 , d(t) → +∞ as t→ +∞

such that, for all t ∈ R,

SuppΦ(t) ⊂ {x ∈ Σ ;u(x) ≤ d(|t|)} .

For any R > 0, k ∈ N and ρ ∈ R, for any f ∈ Hk
0 (Σ) with support in {u ≤ R}, we

have f ∈ Hk
0,ρ(Σ) and

min
(

1,
(

1 +R2
)(−ρ− 3

2
)/2
)

‖f‖Hk(Σ)

≤ ‖f‖Hk
ρ (Σ) ≤ max

(

1,
(

1 +R2
)(−ρ− 3

2
+k)/2

)

‖f‖Hk(Σ) . (5.18)

This immediately implies that for any T > 0, for any ρ ∈ R,

Φ ∈
k
⋂

l=0

Cl
(

[−T, T ] ;Hk−l
0,ρ (Σ ;SDirac)

)

,

i.e.

Φ ∈
k
⋂

l=0

Cl
(

Rt ;Hk−l
0,ρ (Σ ;SDirac)

)

.

Furthermore, using (5.17), (5.18) and proposition 5.1, we see that

‖Φ(t)‖Hk
0,ρ(Σ) ≤ C

max
(

1, (1 + d(|t|)2)
(−ρ− 3

2
+k)/2

)

min
(

1, 5(−ρ− 3

2
)/2
) αke

βk|t|‖Φ0‖Hk
0,ρ(Σ) . (5.19)

As for Θ0, we choose 0 < ε < 1 ; then Θ0 belongs to the space Hk
ρ (Σ̃) associated with

the metric εg, assumed for convenience, in this last part of the proof, to coincide
with g for u > ε instead of r > 2M + ε. Using theorem 3, this implies that the
Dirac equation on (Rt × Σ̃, εg) has a unique solution εΘ ∈ C(Rt ;Hk

ρ (Σ̃)) such that
εΘ(0) = Θ0 and εΘ satisfies

εΘ ∈
k
⋂

l=0

Cl(Rt ;Hk−l
ρ (Σ̃)) .

If we denote by εU(t, s) the propagator for the Dirac equation on (Rt × Σ̃, εg) and
introduce a continuous function εK on Rt such that

εK(t) ≥ ‖ εU(t, 0)‖L(Hk
ρ (Σ̃))
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then we have

‖ εΘ(t)‖Hk
ρ (Σ̃) ≤ εK(t)‖Θ0‖Hk

ρ (Σ̃) = εK(t)‖Θ0‖Hk
ρ (Σ) .

Thanks to the finite propagation speed, there exists T1(ε) < 0 < T2(ε) such that
for T1(ε) < t < T2(ε), the support of εΘ(t) is contained in {u > ε}. Therefore,
using the equivalence (locally uniform in time) of the norm ‖.‖Hk

ρ (Σ̃) associated with

the background flat metric and the norms ‖.‖Hk
ρ (Σ̃t)

associated with the “physical”

metric εg, which, in {u > ε} coincides with g, we have

εΘ ∈
k
⋂

l=0

Cl
(

[T1(ε), T2(ε)] ;Hk−l
0,ρ (Σ ;SDirac)

)

and
‖ εΘ(t)‖Hk

ρ (Σ) ≤ εC εK(t)‖Θ0‖Hk
ρ (Σ) ,

we put εC(t) := εC εK(t). Since, as ε→ 0 we have T1(ε) → −∞ and T2(ε) → +∞,
we easily infer that the Dirac equation on Rt × Σ has a unique solution Θ(t) in
C(Rt ;Hk

0,ρ(Σ)) such that Θ(0) = Θ0 and moreover

Θ ∈
k
⋂

l=0

Cl
(

Rt ;Hk−l
0,ρ (Σ ;SDirac)

)

.

Θ is defined as follows : for any 0 < ε < 1,

Θ(t) := εΘ(t) for T1(ε) < t < T2(ε) .

We now wish to show that the norm of Θ(t) is controlled by the norm of Θ0 for all
times. We fix ε0 = 1/2. Then, we have for t ∈ [T1(1/2), T2(1/2)]

‖Θ(t)‖Hk
ρ (Σ) ≤ 0C(t)‖Θ0‖Hk

ρ (Σ) ,

denoting nC the function εC associated with εn. Now putting ε1 = 1/4, we have
for t ∈ [T1(1/4), T2(1/4)]

‖Θ(t)‖Hk
ρ (Σ) ≤ 1C(t)‖Θ0‖Hk

ρ (Σ) ,

and so on for ε2 = 1/8, etc...

The sequence T1(1/2
n) is strictly decreasing towards −∞ and T2(1/2

n) is strictly
increasing towards +∞. We now choose a continuous function C(t) on R such that

C(t) ≥ nC(t) for t ∈ [T1(1/2
n), T1(1/2

n−1)] ∪ [T2(1/2
n−1), T2(1/2

n)]

then for all t ∈ R we have

‖Θ(t)‖Hk
ρ (Σ) ≤ C(t)‖Θ0‖Hk

ρ (Σ) (5.20)
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and the function C does not depend on Θ0 (that is, does not depend on the choice
of Ψ0), it only depends on the choice of the cut-off function χ and the definition of
the metrics εg.

Now putting the two solutions together, we find that the Dirac equation has a unique
solution Ψ = Φ + Θ in C

(

Rt ;Hk
0,ρ(Σ)

)

such that Ψ(0) = Ψ0 and we have

Ψ ∈
k
⋂

l=0

Cl
(

Rt ;Hk−l
0,ρ (Σ ;SDirac)

)

.

Moreover, for all t ∈ R

‖Ψ(t)‖Hk
0,ρ(Σ) ≤ ‖Φ(t)‖Hk

0,ρ(Σ) + ‖Θ(t)‖Hk
0,ρ(Σ) ≤ C̃(t)

(

‖Φ0‖Hk
0,ρ(Σ) + ‖Θ0‖Hk

0,ρ(Σ)

)

where C̃(t) is a continuous function on R, independent of the choice of Ψ0, whose
existence is deduced from estimates (5.19) and (5.20). Finally, we have

‖Φ0‖Hk
0,ρ(Σ) + ‖Θ0‖Hk

0,ρ(Σ) ≤ C‖Ψ0‖Hk
0,ρ(Σ)

where C is a constant depending only on the cut-off function χ, involving the L∞

norms of its derivatives of order lower than k on {1 < u < 2}.
Hence, U(t) is a strongly continuous one parameter group of bounded operators on
Hk

0,ρ(Σ) for all k ∈ N, ρ ∈ R. This concludes the proof of theorem 5. 2

5.2 Maximal extension of Schwarzschild’s space-time

After having adopted, in the previous section, the point of view of an observer static with
respect to infinity, and thus limited our study to the exterior of the black hole foliated
using Schwarzschild’s time coordinate, we describe here briefly the global geometry of
Schwarzschild’s space-time. We define the Kruskal-Szekeres variables inside and outside
the black hole. These will allow us to show that the horizon is not a singularity of the
metric. The maximal analytic extension of Schwarzschild’s space-time will then appear
naturally. Most of the material of this section is standard, it can be found under various
forms in [7], [24] and [44] for example.

5.2.1 Kruskal-Szekeres coordinates

Outside the black hole, Kruskal Szekeres coordinates (T,X, ω), ω denoting the angular
variables of the Schwarzschild coordinate system, are defined by

T =
1

2
e

r∗
4M

(

e
t

4M − e−
t

4M

)

, X =
1

2
e

r∗
4M

(

e
t

4M + e−
t

4M

)

, (5.21)

where r∗ is the Regge-Wheeler variable

r∗ = r + 2MLog(r − 2M) .
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This coordinate system maps the exterior of the black hole Rt×]2M,+∞[r×S2
ω onto the

quadrant {X > |T |} of RT × RX × S2
ω. The horizon now appears as the hypersurface

{(T,X, ω) ; T = X > 0 , ω ∈ S2}. The outgoing (resp. incoming) radial null geodesics,
represented in (t, r∗, ω) coordinates as the straight lines {(t, r∗ = t+ s, ω) ; t ∈ R} (resp.
{(t, r∗ = −t+s, ω) ; t ∈ R}) for fixed s ∈ R and ω ∈ S2, are described in Kruskal-Szekeres
coordinates as the straight lines {(T,X = T + S, ω)} (resp. {(T,X = −T + S, ω)}) for
fixed S and ω.

Inside the black hole, the definition is very similar. We consider a Regge-Wheeler
coordinate adapted to this domain

r∗ = r + 2MLog|r − 2M | = r + 2MLog(2M − r) ,

the expression of the variables T and X in terms of t and r∗ is then given by

T =
1

2
e

r∗
4M

(

e−
t

4M + e
t

4M

)

, X =
1

2
e

r∗
4M

(

e−
t

4M − e
t

4M

)

. (5.22)

The interior of the black hole Rt×]0, 2M [r×S2
ω is mapped onto the domain {(T,X, ω) ∈

R × R × S2 ; |X| < T <
√
X2 + 2M} and the singularity at r = 0 is represented as the

product of S2
ω with the hyperbola in the (T,X)-plane : {(T,X) ; T 2−X2 = 2M , T > 0}.

The expression of the metric in Kruskal-Szekeres coordinates is the same inside and
outside the black hole

g =
16M2

X2 − T 2

(

1 − 2M

r

)

(

dT 2 − dX2
)

− r2dω2 .

This can be simplified using the fact that

X2 − T 2 = (r − 2M)e
r

2M (5.23)

and we obtain

g =
16M2

r
e−

r
2M

(

dT 2 − dX2
)

− r2dω2 (5.24)

where r is determined implicitely in terms of T andX by (5.23). The function (r−2M)e
r

2M

is analytic in r and strictly increasing from ]0,+∞[ onto ] − 2M,+∞[. It follows that r
is an analytic function of X2 − T 2, and therefore of (T,X), on −2M < X2 − T 2 < +∞.
An immediate consequence is the analyticity of the metric g on the whole Schwarzschild
manifold, described in (T,X, ω) coordinates as {(T,X, ω) ∈ R×R×S2 ; T +X > 0 , T <√
X2 + 2M} (the singularity at r = 0 is not considered as a subset of the Schwarzschild

manifold). This shows in particular that the metric g is not singular at the horizon of
the black hole ; the expression (5.24) of g and the description of the horizon in (T,X, ω)
coordinates reveal it to be a smooth null hypersurface of Schwarzschild’s space-time.
Other properties of the horizon can be inferred from its description in Kruskal-Szekeres
coordinates and more particularly the fact that it is an event horizon (for more details,
the reader is referred to the referrences given at the beginning of this section).
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5.2.2 Maximal Schwarzschild space-time

As we have seen above, the metric (5.24) can be extended analytically on the region

MK =
{

(T,X, ω) ∈ R× R× S2
ω ; X2 − T 2 > −2M

}

.

We obtain a new space-time (MK, g) called the Kruskal extension, or maximal analytic
extension, of Schwarzschild’s space-time. It contains the Schwarzschild manifold (MS , g),
where MS is the subset of MK

MS =
{

(T,X, ω) ∈ MK ; X + T > 0
}

.

The additional part of (MK, g), which we denote (MŠ , g), where

MŠ =
{

(T,X, ω) ∈ MK ; X + T < 0
}

,

is isometric to (MS , g) with its time orientation reversed : it describes a “Schwarzschild
white hole”. More explicitely, MŠ is the image of the Schwarzschild space-time, described
in Schwarzschild coordinates, by the transformations (5.21) and (5.22) with the signs of
T and X reversed. The space-time (MK, g) is best pictured by a Penrose diagram, which
can be constructed by defining the new coordinates :

α = arctan

(

T +X√
2M

)

− arctan

(

T −X√
2M

)

,

β = arctan

(

T +X√
2M

)

+ arctan

(

T −X√
2M

)

.

(MK, g) is globally hyperbolic. We choose a foliation {Sτ}τ∈R by smooth Cauchy hyper-
surfaces in the following manner :

• we consider the foliations {Σt}t∈R and {Σ̌t}t∈R of domains I and III (see figures 5.1
and 5.2) induced by the Schwarzschild coordinate t in these two regions. In region
I, t is defined in terms of T and X by the inverse of transformation (5.21), in region
III we must use the inverse of transformation (5.21) with the signs of T and X
reversed. In both cases, we obtain

t = 2MLog

(

X + T

X − T

)

.

This yields the descriptions of surfaces Σt and Σ̌t in Kruskal-Szekeres coordinates :

Σt =

{

(T,X, ω) ; X > 0 , T =
e

t
2M − 1

e
t

2M + 1
X , ω ∈ S2

}

,

Σ̌t =

{

(T,X, ω) ; X < 0 , T =
e

t
2M − 1

e
t

2M + 1
X , ω ∈ S2

}

.
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r = constant > 2M

r = 2M

r = 2M

r = constant < 2M

t = constant

Singularity (r = 0)

X

T
Singularity (r = 0)

r = constant < 2M

r = 2M

r = 2M

r = constant > 2M

I

II

III

IV

Figure 5.1: The maximal analytic extension of Schwarzschild’s space-time in Kruskal-
Szekeres coordinates : domains I and III correspond to r > 2M , domain II represents the
interior of the black hole and domain IV the interior of the white hole.
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β = −π/2

β + α = −π

Figure 5.2: The Penrose diagram of maximal Schwarzschild space-time
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Σ−τ

neighbourhood of
the crossing sphere at t = 0

t = 0t = 0

Σ

Sτ

τ

and its domain of dependence

Figure 5.3: Foliation of maximal Schwarzschild space-time

• We only require that the hypersurface Sτ , outside the domain of dependence of a
neighbourhood of the horizon at T = 0, coincides with Στ if X > 0 and with Σ̌−τ

if X < 0. Let us explain this requirement more precisely. At T = 0, the horizon is
reduced to the two-sphere {(0, 0, ω)} of RT ×RX × S2

ω at which the horizons of the
black hole and of the white hole intersect. The variables T +X and T −X are null
variables : the domain of dependence of a neighbourhood {(0, X, ω) ; |X| < C} (for
a given C > 0) of the horizon at T = 0 will be the region {|X| < |T | + C}. The
condition imposed on the surfaces Sτ means that for each τ ∈ R, Sτ coincides with
Στ in the region {X > |T |+C} and with Σ̌−τ in the region {X < −|T | −C}. This
condition can be expressed more explicitely in terms of τ : for a given K ∈ R, Sτ

coincides with Στ in the part of region I such that (r being defined implicitely by
(5.23) in terms of T and X)

r∗ = r + 2MLog(r − 2M) > |τ | +K

and Sτ coincides with Σ̌−τ in the part of region III such that r∗ > |τ | + K. We
indicate the typical shape of a surface Sτ in figure 5.3.

For these foliations, the asymptotic behaviour of the metric g at spacelike infinity on
each Sτ is the same as the behaviour of g for fixed t and r → +∞ (this behaviour is
described in the proof of theorem 5). Hence, using such foliations allows us to show that
(MK, g) belongs to our classes of asymptotically flat space-times (with two asymptotic
ends) ; it belongs to all classes (∞, δ) for δ > −2. Thus the theorems of chapter 4
can be applied directly to this framework and guarantee the existence and uniqueness of
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solutions to the Dirac equation with values in L2, Hk, L2
µ, Hk

µ (for any k ∈ N and µ ∈ R)
on each hypersurface Sτ . This proves that solutions to the Dirac equation on the maximal
extension of Schwarzschild’s space-time are well behaved as long as they do not reach the
singularity {X2 − T 2 = −2M}.
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Chapter 6

Dirac’s equation on the Kerr metric

Kerr’s space-time is more perplexing than Schwarzschild’s space-time of which it is a
generalization. The Kerr metric describes a rotating uncharged black hole ; in Boyer-
Lindquist coordinates on Rt × Rr × S2

ω, it takes the form

gµνdx
µdxν =

(

1 − 2Mr

ρ2

)

dt2 +
2a sin2 θ (r2 + a2 − ∆)

ρ2
dtdϕ− ρ2

∆
dr2

−ρ2dθ2 −
(

(r2 + a2) ρ2 + 2Mra2 sin2 θ

ρ2

)

sin2 θ dϕ2, (6.1)

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2,

where a is the angular momentum per unit mass and M > 0 is the mass of the black hole.
The black hole rotates around the axis going through its North and South poles. This
results into a non-zero coefficient gtϕ that couples the variables t and ϕ. The function ∆ is
the analogue of r2(1−2M/r) in Schwarzschild’s space-time ; it defines the horizons as the
sets of points where ∆ = 0. These horizons appear as singularities in the expression (6.1)
above, but they are merely coordinate singularities, the metric can be extended smoothly
through them. The only true curvature singularity of the metric is the equatorial ring
defined by ρ2 = 0, i.e. r = 0 and θ = π/2. There are three types of Kerr space-times
depending on the respective importance of the rotation and the mass :

• Slow Kerr space-time for 0 < |a| < M (the case a = 0 reduces to the Schwarzschild
metric). ∆ has two real roots r− and r+ :

0 < r− = M −
√
M2 − a2 < M < r+ = M +

√
M2 − a2 < 2M, (6.2)

so there are two horizons on either side of the sphere {r = M}.

• Extreme Kerr space-time for |a| = M . M is then a double root for ∆ and the sphere
{r = M} is the only horizon.

• Fast Kerr space-time for |a| > M . ∆ has no real root and the space-time has
no horizon. There is no black hole in this case, the ring singularity is a naked
singularity.

69
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We consider only the case of slow Kerr metrics. Horizons separate the space-time in
connected regions called Boyer-Lindquist blocks :

Block I is the exterior of the black hole {r > r+}. It is the simplest of all three blocks.
In this region, the vectors ∂/∂r, ∂/∂θ, ∂/∂ϕ are spacelike and, for r >> 1, ∂/∂t is
timelike. However, block I contains a region called the ergosphere in which gtt < 0
and thus ∂/∂t is spacelike. The ergosphere is the toröıdal domain around the outside
horizon :

E =
{

(t, r, θ, ϕ) ; r+ < r < M +
√
M2 − a2 cos2 θ

}

.

Inside E , the effects of the rotation are extreme and along every future-oriented non
spacelike curve, the quantity aϕ is strictly increasing.

Block I, like any Boyer-Lindquist block, is not stationary, i.e. there is no timelike
Killing vector field globally defined on it. However, the exterior of the ergosphere
is stationary, and even absolutely stationary, since ∂/∂t is the unique (up to mul-
tiplication by a constant) timelike Killing vector field globally defined there. Also,
every point in block I, even inside the ergosphere, has a stationary neighbourhood.

Block II is the region between the outer and inner horizons {r− < r < r+} ; it only
exists in the slow case. ∂/∂r is timelike there and ∂/∂t, ∂/∂θ, ∂/∂ϕ are spacelike.
It is a dynamic domain where the inertial frames are dragged towards the inner
horizon (the time orientation implicit in this description is such that ∂/∂r is past
pointing).

Block III lies beyond the inner horizon {−∞ < r < r−}. It contains another er-
gosphere

E ′ =
{

(t, r, θ, ϕ) ; M −
√
M2 − a2 cos2 θ < r < r−

}

,

the ring singularity and a time machine (being the only region where ∂/∂ϕ is time-
like) which allows any two points in block III to be joined by a future-oriented
timelike curve. Hence, not only is block III not stationary, it is not causal either.

For a detailed description of the geometry of Kerr black holes, see [50].

6.1 The exterior of the black hole

In this section, we study Dirac fields in block I from the point of view of an observer who is
static with respect to infinity, as we did in section 5.1 for Schwarzschild black holes. The
perception of such observers is limited to block I and is described by the time function t
of the Boyer-Lindquist coordinates. Just as in the Schwarzschild case, light rays in block I
can only reach the horizon when t becomes infinite. Hence, if the support of a Dirac field
(for example) does not touch the horizon at some particular time t0, it will never touch it
for finite values of t, i.e. the distance d(t) of the support of the field to the horizon at time
t is a strictly positive continuous function on Rt ; it may (and usually does) tend to zero
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when t → ±∞. To explain this property more precisely, we consider the principal null
geodesics (the analogues of radial null geodesics in Schwarzschild’s space-time). They are
the straightest routes to or from the horizon and are defined by

ṙ = ±1, θ̇ = 0 , ϕ̇ =
a

∆
, ṫ =

r2 + a2

∆
.

Introducing a new coordinate r∗ such that

dr∗
dr

=
r2 + a2

∆
> 0 on ]r+,+∞[

we get

ṙ∗ = ±ṫ
and therefore, along a principal null geodesic we must have

t = ±r∗ + C .

The horizon r = r+ corresponds to r∗ → −∞ and is consequently reached only when t
becomes infinite.

In this framework, we solve the Cauchy problem for the Dirac equation in Sobolev
and weighted Sobolev spaces. We first study the geometry of {t = constant} slices ; their
extrinsic geometry which is non trivial and even singular at the horizon will make the
analysis of the Dirac-Witten operator slightly more intricate.

6.1.1 The spacelike geometry of block I

We denote by M the space-time outside the black hole and we choose the foliation of M
by the level hypersurfaces of the time-function t :

Σt = {t}×]r+,+∞[r×S2
θ,ϕ . (6.3)

For each t, the hypersurface Σt is spacelike since at each point, its tangent plane is spanned
by the three spacelike vectors ∂

∂r
, ∂

∂θ
, ∂

∂ϕ
. This shows that t is indeed a time function,

i.e. its gradient ∇at is a timelike vector field, in spite of the fact that in Boyer-Lindquist
coordinates, ∂

∂t
is not everywhere timelike in block I. The time orientation is fixed by

deciding that ∇at is future pointing.

The 3 + 1 decomposition of the Kerr metric in block I

We perform the 3 + 1 decomposition of the metric g relative to the foliation {Σt}t∈R. We
calculate the expression of the vector

T a =

√
2

|∇t|∇
at
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in Boyer-Lindquist coordinates. To do this, we look for a future pointing timelike vector
field Ua orthogonal to Σt at each point and we normalize it to obtain T a. The time
orientation yields that t increases along all timelike future pointing curves, hence we
choose Ua of the form

Ua∂a =
∂

∂t
+ A

∂

∂r
+B

∂

∂θ
+ C

∂

∂ϕ

and imposing that Ua should be everywhere g-orthogonal to ∂
∂r

, ∂
∂θ

and ∂
∂ϕ

, we obtain

Ua∂a =
∂

∂t
− gtϕ

gϕϕ

∂

∂ϕ
=

∂

∂t
+

2aMr

(r2 + a2) ρ2 + 2Mra2 sin2 θ

∂

∂ϕ
. (6.4)

We put

α(r, θ) = − gtϕ

gϕϕ

=
2aMr

(r2 + a2) ρ2 + 2Mra2 sin2 θ
. (6.5)

The norm of Ua is then given by

|U |2 = UaU
a = gtt −

(gtϕ)2

gϕϕ

=
−∆ sin2 θ

gϕϕ

=
∆ρ2

(r2 + a2) ρ2 + 2Mra2 sin2 θ
> 0 in block I ,

and the vector T a is

T a =

√
2

|U | U
a.

If we introduce the vector fields ra, θa, ϕa defined as

ra∂a = |grr|−1/2 ∂

∂r
, θa∂a = |gθθ|−1/2 ∂

∂θ
, ϕa∂a = |gϕϕ|−1/2 ∂

∂ϕ
,

then { 1√
2
T a, ra, θa, ϕa} is a local orthonormal Lorentz frame in block I ; the metric can

therefore be written as

gab =
1

2
TaTb − hab , hab = rarb + θaθb + ϕaϕb

and the 1-forms Ta, ra, θa and ϕa are given by

Tadx
a =

√
2 |U | dt =

√
2

√

gtt −
(gtϕ)2

gϕϕ

dt , radx
a = −|grr|1/2dr , θadx

a = −|gθθ|1/2dθ ,

ϕadx
a = |gϕϕ|−1/2 (gtϕdt+ gϕϕdϕ) = −|gϕϕ|1/2 (dϕ− α dt) .

This gives the expression of the lapse function

N =
√

2 |U | =
√

2

(

gtt −
(gtϕ)2

gϕϕ

)1/2

=

(

2∆ρ2

(r2 + a2) ρ2 + 2Mra2 sin2 θ

)1/2

.
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In Boyer-Lindquist coordinates, the product structure is associated to the Killing vector
field ∂

∂t
. If we wish our decomposition of the metric to be useful, we must interpret hab

as a (time dependent) metric on

Σ :=]r+,+∞[r×S2
θ,ϕ .

This requires to choose the product structure associated with T a. An explicit way of
doing this is to define the new coordinates τ , R, Θ, Φ :

τ = t , R = r , Θ = θ , Φ = ϕ− (t− t0)α(r, θ) (mod 2π)

for a given t0 ∈ R. We obtain the following expression of g :

g(τ) =
N2

2
dτ 2 − h(τ)

=

(

gtt −
(gtϕ)2

gϕϕ

)

dτ 2 + grrdR
2 + gθθdΘ2 + gϕϕ

(

dΦ + (τ − t0)
∂α

∂R
dR + (τ − t0)

∂α

∂Θ
dΘ

)2

=

(

gtt −
(gtϕ)2

gϕϕ

)

dτ 2 +

(

grr + (τ − t0)
2

(

∂α

∂R

)2

gϕϕ

)

dR2

+

(

gθθ + (τ − t0)
2

(

∂α

∂Θ

)2

gϕϕ

)

dΘ2 + gϕϕdΦ2

+2(τ − t0)
2 ∂α

∂R

∂α

∂Θ
gϕϕdRdΘ + 2(τ − t0)

∂α

∂R
gϕϕdRdΦ + 2(τ − t0)

∂α

∂Θ
gϕϕdΘdΦ . (6.6)

Note that for these new variables, we have

∂

∂τ
= Ua∂a ,

∂

∂R
=

∂

∂r
,
∂

∂Θ
=

∂

∂θ
,
∂

∂Φ
=

∂

∂ϕ
,

T a∂a =

√
2

|U |
∂

∂τ
=

2

N

∂

∂τ
.

The intrinsic and extrinsic geometry of the slices

All slices Στ , τ ∈ R have the same geometry (both intrinsic and extrinsic) since in Boyer-
Lindquist coordinates, the metric g is independent of t ( ∂

∂t
is a Killing vector field). We

consider a generic slice (Σ, h(τ0)) and we choose t0 = τ0 in order to simplify the expression
of h(τ0) :

h(τ0) = −grrdR
2 − gθθdΘ2 − gϕϕdΦ2

=
ρ2

∆
dR2 + ρ2dΘ2 +

[

(R2 + a2)ρ2 + 2MRa2 sin2 Θ

ρ2

]

sin2 Θ dΦ2,

ρ2 = R2 + a2 cos2 Θ , ∆ = R2 − 2MR + a2 .
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The coefficient ρ2/∆ is singular at the horizon H = {r+}R × S2
Θ,Φ ; we introduce a new

radial coordinate to show that the metric h(τ0) can be extended smoothly through H.
Putting

F (R) :=
∆

R2
= 1 − 2M

R
+
a2

R2
=

(R− r+)(R− r−)

R2
,

we define u(R) for R ∈ [r+,+∞[ by

u(R) :=

∫ R

r+

F−1/2(s)ds .

(Note that for extreme Kerr space-time, we would have r+ = r− = M and consequently,
the integral defining u(R) would diverge. Hence, the h-distance to the horizon would be
everywhere infinite in block I.) The function u of R is continuous strictly increasing from
[r+,+∞[ onto [0,+∞[, it is C∞ on ]r+,+∞[ but is not differentiable at r+. As in the
Schwarzschild case, we easily show the following result ; the proof is identical to that of
lemma 5.1 and we do not repeat it here :

Lemma 6.1 The inverse function u 7−→ R(u) is smooth from [0,+∞[ onto [r+,+∞[ and
all its derivatives are uniformly bounded on [0,+∞[.

Lemma 6.1 will allow us to prove that each slice is a smooth manifold with boundary
H and that the lapse function is smooth on Σ̄. The following corollary expresses these
properties as well as the fact that h(τ) depends regularly on τ :

Corollary 6.1 The manifold

(

Σ̄ = [0,+∞[u×S2
Θ,Φ, h(τ0)

)

is a smooth manifold with boundary. The lapse function N , which is independent of τ , is
regular and uniformly bounded on Σ̄ as well as all its derivatives. Moreover, the metric
h(τ) is a smooth function of τ ; to be more explicit, we have

hab ∈ C∞ (Rτ ; C∞
b

(

Σ̄ ;TabM
))

, hab ∈ C∞ (Rτ ; C∞
b

(

Σ̄ ;T abM
))

.

Remark 6.1 The extrinsic curvature

1√
2
Kab = − 1√

2N

∂

∂τ
(hab)

is singular at the horizon since N vanishes there but not ∂τhab. However,

NKab ∈ C∞ (Rτ ; C∞
b

(

Σ̄ ;TabM
))

.

In the Dirac system considered as an evolution equation on block I, Kab will only appear
multiplied by N and will consequently play the part of a bounded potential.
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Proof of corollary 6.1 : We write the metric h(τ0) in the form

h(τ0) =
ρ2

R2
du2+

ρ2

(1 + u)2
(1+u)2dΘ2+

[

(R2 + a2)ρ2 + 2MRa2 sin2 Θ

ρ2(1 + u)2

]

(1+u)2 sin2 Θ dΦ2.

The functions
ρ2

R2
,

ρ2

(1 + u)2
,

(R2 + a2)ρ2 + 2MRa2 sin2 Θ

ρ2(1 + u)2

are smooth on Σ̄, positive, uniformly bounded as well as all their derivatives and uniformly
bounded away from zero. Hence, h(τ0) is a smooth, symmetric, positive definite 2-form
on Σ̄, uniformly controlled below and above by the euclidian metric on Σ̄ considered as
R3 rB(0, 1) :

du2 + (1 + u)2dΘ2 + (1 + u)2 sin2 Θ dΦ2.

This shows in particular that (Σ̄, h(τ0)) is a smooth Riemannian manifold with boundary
H. Given a regular coordinate system on Σ̄, say the underlying euclidian coordinates on
R3 rB(0, 1), the 3× 3 matrices hij and hij, representing the metric h(τ0) and its inverse
in this coordinate basis, are smooth and bounded on Σ̄ as well as all their derivatives.
This is expressed more intrinsically by

hab(τ0) ∈ C∞
b

(

Σ̄ ;TabM
)

, hab(τ0) ∈ C∞
b

(

Σ̄ ;T abM
)

.

The lapse function N is given by

N(R,Θ) =

(

2R2ρ2

(R2 + a2) ρ2 + 2MRa2 sin2 Θ

)1/2

F 1/2.

It is the result of the multiplication of F 1/2 by a smooth function on Σ̄, uniformly bounded
as well as all its derivatives and uniformly bounded away from zero. Therefore, as a trivial
consequence of lemma 6.1 and dR

du
= F 1/2, we have

N ∈ C∞
b (Σ̄) .

We now study the regularity of h(τ) with respect to τ . Let us consider the expressions of
h(τ) and h(τ0) in the coordinate system R, Θ, Φ with t0 = τ0 :

h(τ) = −grrdR
2 − gθθdΘ2 − gϕϕ

(

dΦ + (τ − τ0)
∂α

∂R
dR + (τ − τ0)

∂α

∂Θ
dΘ

)2

,

h(τ0) = −grrdR
2 − gθθdΘ2 − gϕϕdΦ2.

Putting
Φ̃ = Φ + (τ − τ0)α(R,Θ) (mod 2π) ,

we have
h(τ) = −grrdR

2 − gθθdΘ2 − gϕϕdΦ̃2.



76 CHAPTER 6

h(τ) is obtained from h(τ0) by a rotation around the axis of the black hole whose angle
(depending on τ , R and Θ) is

(τ − τ0)α(R,Θ) = −(τ − τ0)
gtϕ(R,Θ)

gϕϕ(R,Θ)
.

The function α(R,Θ) is smooth on Σ̄ and bounded as well as all its derivatives. Denoting
by G(τ − τ0) the C∞-diffeomorphism of Σ̄

G(τ − τ0) : (R,Θ,Φ) 7−→ (R,Θ,Φ + (τ − τ0)α(R,Θ)) ,

hab(τ) (resp. hab(τ)) is the pullback of hab(τ0) (resp. hab(τ0)) by G(τ − τ0). This entails

hab ∈ C∞ (Rτ ; C∞
b

(

Σ̄ ;TabM
))

, hab ∈ C∞ (Rτ ; C∞
b

(

Σ̄ ;T abM
))

and concludes the proof of corollary 6.1. 2

On Σ, we introduce Sobolev spaces with zero traces at the horizon associated with the
metric h(τ) :

Definition 6.1 For k ∈ N, Hk
0 (Στ ) is the completion of C∞

0 (Σ) in the norm

‖f‖Hk(Στ ) =

(

k
∑

p=0

∫

Σ

〈

(D̄Στ
)pf, (D̄Στ

)pf
〉

τ
dVolh

)1/2

,

where D̄Στ
is the Levi-Civita connection on (Σ, h(τ)), dVolh and < ., . >τ are the volume

element on Σ and the positive definite inner product induced by the metric h(τ). Note that
the volume element dVolh(τ) is independent of τ as can be seen by an explicit calculation
in R, Θ, Φ coordinates :

dVolh(τ) = −grrgθθgϕϕdRdΘdΦ = dVolh(τ0) , ∀τ ∈ R .

This time-independence, which is a consequence of the fact that ∂
∂t

and ∂
∂ϕ

are Killing
vector fields, justifies the notation dVolh.

Remark 6.2 1. For any τ ∈ R, the norms in Hm
0 (Στ ) and Hm

0 (Στ0) are equivalent.
This equivalence is locally uniform in time (and the constants in the norm estimates
depend not only on τ but also on the bundle in which functions take their values).
Hence, we shall simply denote Hm

0 (Σ) the Sobolev space of order m on Σ with zero
traces at the horizon, associated with the metric h. Our standard norm on this
space will be that associated with h(τ0) ; we denote it ‖.‖Hm(Σ). When we wish
to use explicitely the norm associated with the metric h(τ), we come back to the
notation ‖.‖Hm(Στ ).

2. Note that the norm ‖.‖Hm(Σ) is equivalent to the flat Sobolev norm on Σ considered
as R3 r B̄(0, 1) (see the beginning of the proof of corollary 6.1).
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3. For Dirac or Weyl spinor fields, the hermitian product < ., . >τ is that induced by
the vector field T a which is independent of τ . Therefore, for any such spinor field
Ψ on Σ, we have

‖Ψ‖L2(Στ ) = ‖Ψ‖L2(Σ) ∀τ ∈ R

and the conservation of the L2(Στ )-norm for solutions to the Dirac equation will in
fact mean the conservation of the fixed standard norm on L2(Σ).

On each slice (Σ, h(τ)) embedded in (M, g), we consider the Dirac-Witten operator D
W
(τ).

The extrinsic geometry of the slices being non trivial, D
W
(τ) does not coincide with the

Dirac operator D
Σ
(τ) on (Σ, h(τ)) and we have (see (3.25))

D
W
(τ) = D

Σ
(τ) +

1

2
√

2
K e0.

K = Ka
a is singular at the horizon, however, thanks to remark 6.1, we have

NK ∈ C∞ (Rτ ; C∞
b (Σ̄)

)

.

In the Dirac system written as an evolution equation, K will be multiplied by N and the
quantity NK will merely be a bounded potential.

We now study the Dirac operator D
Σ
(τ) on (Σ, h(τ)). D

Σ
(τ) is formally self-adjoint on

L2(Σ) and satisfies the Bochner-Lichnerowicz-Weitzenböck formula

(D
Σ
(τ))∗ D

Σ
(τ) = (D

Σ
(τ))2 = D̄∗

Στ
D̄Στ

+
1

4
Scalh(τ) = −∆h(τ) +

1

4
Scalh(τ) . (6.7)

Because of the non zero extrinsic curvature, the scalar curvature Scalh(τ) of (Σ, h(τ)) is
not necessarily zero, although the scalar curvature of (M, g) is zero. But we have

Scalh(τ) ∈ C∞ (Rτ ; C∞
b (Σ̄)

)

.

This will be enough to guarantee that, similarly to the Schwarzschild case, the Sobolev
norms can be expressed using D

Σ
:

Proposition 6.1 We consider on Hk
0 (Σ ;SDirac) the following norm for τ ∈ R

|‖Ψ|‖k,τ =

(

k
∑

p=0

∫

Σ

〈(D
Σ
(τ))p Ψ, (D

Σ
(τ))p Ψ〉 dVolh

)1/2

(as we have mentioned in remark 6.2, the hermitian product < ., . >τ on Dirac spinors is
independent of τ and we denote it < ., . >). The norms ‖.‖Hk(Σ) and |‖.|‖k,τ are equivalent
on Hk

0 (Σ ;SDirac), the equivalence being locally uniform in τ .
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Remark 6.3 The operator

D/ (τ) = e0.DΣ
(τ) , e0 =

1√
2
T a∂a ,

is formally skew-adjoint on L2(Σ ;SDirac), satisfies

(D/ (τ))∗ D/ (τ) = − (D/ (τ))2 = (D
Σ
(τ))2 = −∆h(τ) +

1

4
Scalh(τ) (6.8)

and we have for any Ψ ∈ Hk
0 (Σ ;SDirac)

|‖Ψ|‖k,τ =

(

k
∑

p=0

∫

Σ

〈(D/ (τ))p Ψ, (D/ (τ))p Ψ〉 dVolh

)1/2

, ∀τ ∈ R .

Proof of proposition 6.1 : For each τ ∈ R, we prove that for all k ∈ N, we have the

following norm equivalence on Hk
0 (Σ ;SDirac)

‖.‖Hk(Στ ) ' |‖.|‖k,τ . (6.9)

Owing to the regularity in time of h(τ), this equivalence is locally uniform in time and
finally proposition 6.1 follows from remark 6.2.

The proof of equivalence (6.9) follows exactly the proof of proposition 5.1. We work
on (Σ, h(τ)) for τ ∈ R fixed. We clearly have

‖Ψ‖L2(Σ) = |‖Ψ|‖0,τ for all Ψ ∈ L2(Σ ;SDirac)

and (6.7) implies (6.9) for k = 1 on H1
0 (Σ ;SDirac) (this time, we do not have equality of

the norms because of the non zero scalar curvature). We have then the exact equivalent
of lemma 5.2 for ∆h(τ) on Σ : for any k ∈ N there exist 0 < C1 < C2 < +∞ such that,
for all Ψ ∈ Hk+2

0 (Σ ;SDirac)

C1‖Ψ‖Hk+2(Στ ) ≤ ‖Ψ‖Hk(Στ ) + ‖∆h(τ)Ψ‖Hk(Στ ) ≤ C2‖Ψ‖Hk+2(Στ ) .

This immediately yields the existence for all k ∈ N of 0 < C̃1 < C̃2 < +∞ such that for
all Ψ ∈ Hk+2

0 (Σ ;SDirac)

C̃1‖Ψ‖Hk+2(Στ ) ≤ ‖Ψ‖Hk(Στ ) + ‖(D
Σ
(τ))2Ψ‖Hk(Στ ) ≤ C̃2‖Ψ‖Hk+2(Στ )

since the scalar curvature only perturbs ‖∆h(τ)Ψ‖Hk(Στ ) by bounded terms of order lower
than or equal to k. This last inequality allows us to prove (6.9) for all k by induction and
thus to prove proposition 6.1. 2
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6.1.2 The global exterior Cauchy problem

We give a generalization of theorem 5 to the exterior of slow Kerr black holes. We first
need to define the weighted Sobolev spaces on Σ with zero traces at the horizon :

Definition 6.2 For k ∈ N, ρ ∈ R, τ ∈ R, the weighted Sobolev space with zero traces at
the horizon, Hk

0,ρ(Στ ), is defined as the completion of C∞
0 (Σ) in the norm

‖f‖Hk
ρ (Στ ) =

(

k
∑

p=0

∫

Σ

(

1 + u2
)−ρ− 3

2
+p 〈

(D̄Στ
)pf, (D̄Στ

)pf
〉

τ
dVolh

)1/2

.

Here u is the function defined earlier

u(R) =

∫ R

r+

F−1/2(s)ds .

u is not the h(τ) distance to the horizon but it is uniformly equivalent to it. Replacing
1 + u2 by r2 would replace the norm by an equivalent one. The norms ‖.‖Hk

ρ (Στ ) and
‖.‖Hk

ρ (Στ0
) are equivalent for any given τ ∈ R and this equivalence is locally uniform in

τ . Therefore, we simply denote Hk
0,ρ(Σ) the weighted Sobolev space of order k and weight

ρ on Σ with zero traces at the horizon associated with the metric h. We use the norm
‖.‖Hk

ρ (Στ0
) as the standard norm on this space and we denote it ‖.‖Hk

ρ (Σ). For k = 0, we

denote H0
0,ρ(Σ) = L2

ρ(Σ). The norm ‖.‖L2
ρ(Στ ) in L2

ρ(Σ ;SDirac) is independent of τ . Note
that the norm ‖.‖Hk

ρ (Σ) is equivalent to the flat weighted Sobolev norm on Σ considered as

R3 r B̄(0, 1).

We have the following theorem concerning the well-posedness of the Cauchy problem
on block I in Sobolev and weighted Sobolev spaces :

Theorem 6 1. For any initial data Ψ0 ∈ L2(Σ ;SDirac), the Dirac equation outside the
black hole has a unique solution Ψ ∈ C (Rτ ;L2(Σ ;SDirac)) such that Ψ|τ=τ0 = Ψ0.
Moreover, the evolution is unitary in L2(Σ), i.e.

‖Ψ(τ)‖L2(Σ) = ‖Ψ0‖L2(Σ) , for all τ ∈ R .

The propagator U(τ, σ) for the Dirac equation outside the black hole is strongly
continuous on Rτ × Rσ with values in L (L2(Σ ;SDirac)).

2. If Ψ0 ∈ Hk
0 (Σ ;SDirac), k ∈ N, the associated solution Ψ satisfies

Ψ ∈
k
⋂

l=0

Cl
(

Rτ ;Hk−l
0 (Σ ;SDirac)

)

,

U(τ, σ) is strongly continuous on Rτ × Rσ with values in L
(

Hk
0 (Σ ;SDirac)

)

for all
k ∈ N.
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3. For any initial data Ψ0 ∈ L2
ρ(Σ ;SDirac), ρ ∈ R, the Dirac equation outside the

black hole has a unique solution Ψ ∈ C
(

Rτ ;L2
ρ(Σ ;SDirac)

)

such that Ψ|τ=τ0 = Ψ0.

U(τ, σ) is strongly continuous on Rτ × Rσ with values in L
(

L2
ρ(Σ ;SDirac)

)

for all
ρ ∈ R.

4. If Ψ0 ∈ Hk
0,ρ(Σ ;SDirac), k ∈ N, ρ ∈ R, the associated solution Ψ satisfies

Ψ ∈
k
⋂

l=0

Cl
(

Rτ ;Hk−l
0,ρ (Σ ;SDirac)

)

,

U(τ, σ) is for all k ∈ N, ρ ∈ R, strongly continuous on Rτ × Rσ with values in
L
(

Hk
0,ρ(Σ ;SDirac)

)

.

Proof of theorem 6 : The Dirac equation outside the black hole has the form

∇e0
Ψ = −D/ (τ)Ψ − 1

2
√

2
K(τ)Ψ − ime0.Ψ (6.10)

with e0 = 1√
2
T a∂a. We choose a spin-frame {oA, ιA} adapted to the foliation such as

defined in appendix A ; the equation (6.10) becomes

∂Ψ

∂τ
= − N√

2

(

D/ (τ) +
1

2
√

2
K(τ) + imγ0 +B(τ)

)

Ψ (6.11)

where

γ0 = i

(

0 Id2

−Id2 0

)

and B is the 4×4 matrix containing the connection terms coming from the time derivative.
The following result is a consequence of appendix A and the regularity of NK(τ) :

Lemma 6.2 The potential in equation (6.11) satisfies (K is of course to be understood
here as KId4)

N√
2

(

1

2
√

2
K(τ) + imγ0 +B(τ)

)

∈ C∞ (Rτ ; C∞
b (Σ̄ ;M4(C)

)

.

We now proceed to proving theorem 6. The proof is very similar to that of theorem 5 and
therefore we simply highlight the parts which differ from it.

1. The well-posedness of the Cauchy problem in L2(Σ) : For ε > 0, we consider on Rτ×
Σ̃, Σ̃ := [0,+∞[R×S2

Θ,Φ, a smooth Lorentzian metric εg which coincides with g for
R > r+ + ε. We choose the same background metrics as in the Schwarzschild case

h̃ = dR2 +R2dΩ2 , dΩ2 = dΘ2 + sin2 Θ dΦ2,



6.1. THE EXTERIOR OF THE BLACK HOLE 81

g̃ =

(

1 − ρ(R)
2M

R

)

dτ 2 −
(

1 + ρ(R)
2M

R

)

dR2 −R2dΩ2,

where ρ is a smooth cut-off function on [0,+∞[ such that ρ ≡ 0 on [0, 3M ] and
ρ ≡ 1 on [4M,+∞[.

For each ε > 0, we show that εg is of class (∞, δ) on Rτ × Σ̃ for any δ > −2. In
{R > r+ + ε}, we have

εg = g =
(

gtt − (gtϕ)2

gϕϕ

)

dτ 2 +
(

grr + (τ − τ0)
2
(

∂α
∂R

)2
gϕϕ

)

dR2

+
(

gθθ + (τ − τ0)
2
(

∂α
∂Θ

)2
gϕϕ

)

dΘ2 + gϕϕdΦ2

+2(τ − τ0)
2 ∂α

∂R
∂α
∂Θ
gϕϕdRdΘ + 2(τ − τ0)

∂α
∂R
gϕϕdRdΦ + 2(τ − τ0)

∂α
∂Θ
gϕϕdΘdΦ .

We recall that

α = − gtϕ

gϕϕ

=
2aMR

(R2 + a2) ρ2 + 2MRa2 sin2 Θ

and

−gϕϕ =

(

(

R2 + a2
)

+
2MRa2 sin2 Θ

ρ2

)

sin2 Θ ,

whence, as R → +∞,

D̃l(α) = O(R−3−l) , D̃l

(

∂α

∂Θ

)

= O(R−5−l) ,

D̃l

(

∂α

∂R

)

= O(R−4−l) , D̃l(gϕϕ) = O(R2−l) , l ∈ N ,

where D̃ is the Levi-Civita connection on (Σ̃, h̃). From these properties, we infer
that for any l ∈ N, we have as R → +∞ :

D̃l
(gRΘ

R

)

= D̃l

(

2(τ − τ0)
2 gϕϕ

R

∂α

∂R

∂α

∂Θ

)

= O(R−8−l) ,

D̃l
( gRΦ

R sin Θ

)

= D̃l

(

2(τ − τ0)
gϕϕ

R sin Θ

∂α

∂R

)

= O(R−3−l) ,

D̃l
( gΘΦ

R2 sin Θ

)

= D̃l

(

2(τ − τ0)
gϕϕ

R2 sin Θ

∂α

∂Θ

)

= O(R−5−l) .

We must remember, in order to understand the formulae above, that the asymp-
totically constant 1-forms are not dR, dΘ, dΦ but dR, RdΘ and R sin Θ dΦ. There
remains to estimate the fall-off of the diagonal terms of g − g̃. We start with the
lapse function :

gττ = gtt −
(gtϕ)2

gϕϕ

=
∆

R2

ρ2R2

(R2 + a2) ρ2 + 2MRa2 sin2 Θ
.
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The quantity ∆/R2 behaves like 1 − 2M/R at infinity since

∆

R2
= 1 − 2M

R
+
a2

R2
,

also
ρ2R2

(R2 + a2) ρ2 + 2MRa2 sin2 Θ
= 1 − a2ρ2 + 2MRa2 sin2 Θ

(R2 + a2) ρ2 + 2MRa2 sin2 Θ
.

Therefore,

gττ −
(

1 − 2M

R

)

= O(R−2) , R → +∞

and for all l ∈ N,

D̃l

(

gττ −
(

1 − 2M

R

))

= O(R−2−l) , R → +∞ .

The radial term gRR is

gRR = grr + (τ − τ0)
2gϕϕ

(

∂α

∂R

)2

= −ρ
2

∆
+ (τ − τ0)

2gϕϕ

(

∂α

∂R

)2

.

The time dependent term satisfies for all l ∈ N

D̃l

(

(τ − τ0)
2gϕϕ

(

∂α

∂R

)2
)

= O(R−6−l) , R → +∞ .

As for the time independent term, we have

ρ2

∆
−
(

1 +
2M

R

)

=
ρ2

R2

1

1 − 2M
R

+ a2

R2

−
(

1 +
2M

R

)

=

(

1 +
a2 cos2 Θ

R2

)(

1 − 2M

R
+
a2

R2

)−1

−
(

1 +
2M

R

)

whence
D̃l (gRR − g̃RR) = O(R−2−l) , R → +∞ , l ∈ N .

The time dependent term in gΘΘ is also short range :

D̃l

(

(τ − τ0)
2 gϕϕ

R2

(

∂α

∂Θ

)2
)

= O(R−10−l) , R → +∞

and we simply need to study gθθ − g̃ΘΘ :

gθθ − g̃ΘΘ = −ρ2 +R2 = −a2 cos2 Θ
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and therefore

D̃l

(

1

R2
(gΘΘ − g̃ΘΘ)

)

= O(R−2−l) , R → +∞ , l ∈ N .

The only remaining term is

gΦΦ − g̃ΦΦ = −R2 sin2 Θ

(

(R2 + a2) ρ2 + 2MRa2 sin2 Θ

R2ρ2
− 1

)

= −R2 sin2 Θ

(

a2ρ2 + 2MRa2 sin2 Θ

R2ρ2

)

and this expression entails

D̃l

(

1

R2 sin2 Θ
(gΦΦ − g̃ΦΦ)

)

= O(R−2−l) , R → +∞ , l ∈ N .

We conclude that for any l ∈ N, ε > 0

D̃l ( εg − g̃) = O(R−2−l) , R → +∞ .

The metric εg being smooth on R× Σ̃, this proves that εg is of class (∞, δ) for any
δ > −2.

Then, we follow the proof of point 1 of theorem 5 to solve the Cauchy problem in
L2(Σ ;SDirac) for equation (6.11) with initial data on the typical slice Στ0 , i.e. on
any slice we choose to consider as the typical slice. We also obtain the conservation
of the physical L2(Σ) norm of the solutions : ‖Ψ(τ)‖L2(Στ ), but since the norm
‖.‖L2(Στ ) is the same for all τ ∈ R, this shows that the standard L2(Σ) norm of
the solutions is conserved throughout time. The time dependence of the coefficients
of the equation prevents the propagator, U(τ, σ) : Ψ(σ) 7−→ Ψ(τ), from being a
group ; the conservation of the L2 norm together with the strong continuity of the
propagators for the metrics εg imply that U is strongly continuous on Rτ ×Rσ with
values in L (L2(Σ ;SDirac)). This proves the first part of theorem 6.

2. Well-posedness of the Cauchy problem in Sobolev spaces : For a smooth solution Ψ
associated with some initial data Ψ0 ∈ C∞

0 (Σ ;SDirac), we consider the evolution
equation for (D/ (τ))k Ψ, k ∈ N in order to prove by induction estimates on the
Sobolev norms of Ψ. Applying (D/ (τ))k to equation (6.11), we obtain

∂
∂τ

(

(D/ (τ))k Ψ(τ)
)

= − N√
2

(

D/ (τ) + 1
2
√

2
K(τ) + imγ0 +B(τ)

)

(D/ (τ))k Ψ(τ)

+
{

∂
∂τ

(

(D/ (τ))k
)}

Ψ(τ) − 1√
2

[

(D/ (τ))k , N
]

D/ (τ)Ψ(τ)

− 1√
2

[

(D/ (τ))k , 1
2
√

2
NK(τ)

]

Ψ(τ) − im√
2

[

(D/ (τ))k , Nγ0
]

Ψ(τ)

− 1√
2

[

(D/ (τ))k , NB(τ)
]

Ψ(τ) . (6.12)
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We write equation (6.12) as

∂

∂τ

(

(D/ (τ))k Ψ(τ)
)

= − N√
2

(

D/ (τ) +
K(τ)

2
√

2
+ imγ0 +B(τ)

)

(D/ (τ))k Ψ(τ) +G(τ) .

Using lemma 6.2 and the norm equivalence of proposition 6.1, we have

‖G(τ)‖L2(Σ) ≤ C(τ)‖Ψ(τ)‖Hk(Σ) ≤ C ′(τ)|‖Ψ(τ)|‖k,τ

where C and C ′ are continuous positive functions on R, independent of Ψ. The
integral formula

(D/ (τ))k Ψ(τ) = U(τ, τ0)
(

(D/ (τ0))
k Ψ0

)

+

∫ τ

τ0

U(τ, σ)G(σ)dσ (6.13)

then allows us to obtain by induction estimates of the kind

|‖Ψ(τ)|‖k,τ ≤ αk(τ)|‖Ψ0|‖k,τ0 (6.14)

where αk is a continuous positive function on R, independent of Ψ0. These estimates
prove the well-posedness of the Cauchy problem in Hk

0 (Σ) and together with the
integral formulae (6.13), they establish that U(τ, σ) is strongly continuous on R2

τ,σ

with values in L
(

Hk
0 (Σ ;SDirac)

)

for all k ∈ N. The additional regularities of the
solutions are then read directly on the equation.

3. and 4. The Cauchy problem in weighted L2 and Sobolev spaces : For this last part,
we follow the lines of the proof of the fourth part of theorem 5. The only slight
differences are first that we need to take account of the initial time τ0 which is not
necessarily zero and second that we must use the estimates (6.14) instead of (5.17).
We obtain estimates of the form

‖Ψ(τ)‖L2
ρ(Σ) ≤ αρ(τ)‖Ψ0‖L2

ρ(Σ) , ‖Ψ(τ)‖Hk
ρ (Σ) ≤ βk,ρ(τ)‖Ψ0‖Hk

ρ (Σ)

where αρ (ρ ∈ R) and βk,ρ (k ∈ N∗, ρ ∈ R) are continuous positive functions
on R, independent of Ψ0. As previously, the strong continuity of U(τ, σ) on R2

τ,σ

with values in L
(

Hk
0,ρ(Σ ;SDirac)

)

is a consequence of the strong continuity of the
propagators for the metrics εg and of the estimates above. This concludes the proof
of theorem 6. 2

6.2 Maximal extension of Kerr’s space-time

The global geometry of Kerr’s space-time (and in particular slow Kerr) is far more complex
than that of Schwarzschild’s space-time. An entire chapter of B. O’Neill’s book [50] is
devoted to the construction of the maximal extension. Our purpose in this section is to
describe this construction schematically and to point out so-called Kruskal domains in
maximal slow Kerr space-time for which, with a natural choice of foliation, the theorems
of chapter 4 can be applied.
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6.2.1 Kerr-star and star-Kerr coordinates

Just as we did in the Schwarzschild case, we choose a coordinate system which will allow
us to represent globally the whole of Kerr’s space-time. This choice is guided by the
following physical consideration : if a particle is to pass from block I to block II across the
outer horizon and then from block II to block III across the inner horizon, its most direct
course is to follow an incoming principal null geodesic. The whole idea of the Kerr-star
coordinate system is to turn incoming principal null geodesics into coordinate lines. Such
geodesics are defined on all three blocks in Boyer-Lindquist coordinates by

ṫ =
r2 + a2

∆
, ṙ = −1 , θ̇ = 0 , ϕ̇ =

a

∆
.

Keeping the coordinates r and θ, we introduce two new coordinates t∗ and ϕ∗ of the form

t∗ = t+ T (r) , ϕ∗ = ϕ+ A(r)

where the functions T and A are required to satisfy

dT

dr
=
r2 + a2

∆
,

dA

dr
=

a

∆
.

(t∗, r, θ, ϕ∗) defines a coordinate system in each Boyer-Lindquist block1, called Kerr-star
coordinates, in which the incoming principal null geodesics are described by

ṙ = −1 , θ̇ = 0 , ṫ∗ = ṫ+
dT

dr
ṙ = 0 , ϕ̇∗ = ϕ̇+

dA

dr
ṙ = 0 ,

i.e. they are the r coordinate curves parametrized by s = −r (or −r+C). The expression
of the Kerr metric in Kerr-star coordinates is given by

g = gttdt
∗2 + 2gtϕdt∗dϕ∗ + gϕϕdϕ∗2 − ρ2dθ2 − 2dt∗dr + 2a sin2 θ dϕ∗dr , (6.15)

where gtt, gtϕ, gϕϕ and gθθ = −ρ2 are as defined in (6.1), i.e.

gtt =

(

1 − 2Mr

ρ2

)

, gtϕ =
a sin2 θ (r2 + a2 − ∆)

ρ2
,

gϕϕ = −
(

(r2 + a2) ρ2 + 2Mra2 sin2 θ

ρ2

)

sin2 θ , ρ2 = r2 + a2 cos2 θ .

We see from (6.15) that the metric g is smooth on all three blocks, with the exception
of the ring singularity {ρ2 = 0} = {r = 0 and θ = π/2} in block III, and across both
horizons (the component grr in Boyer-Lindquist coordinates was the only component of
g to be singular at the horizons and it does not appear in (6.15)).

1with the exception of the axis (θ = 0 and θ = π) ; this coordinate singularity can be dealt with
simply (see [50] lemma 2.2.2), we shall systematically ignore it.
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Kerr-star space-time is defined as the manifold

M∗ = Rt∗ × Rr × S2
θ,ϕ∗ \

{

(t∗, r, θ, ϕ∗) ; r = 0 and θ =
π

2

}

equipped with the smooth metric (6.15) and with the time orientation such that the null
coordinate vector field − ∂

∂r
, defined and smooth on the whole of M∗ and whose integral

lines are the incoming principal null geodesics, be future oriented. This time orientation
is consistent with the fact that, in Boyer-Lindquist coordinates, the Killing vector field
∂
∂t

is future oriented outside the ergosphere in block I and also with the description of
block II given at the beginning of the chapter, with − ∂

∂r
(in Boyer-Lindquist coordinates)

future pointing. This space-time contains all three blocks, glued smoothly at the horizons
by the requirement that incoming principal null geodesics should cross horizons smoothly
and that their orientation defines the time orientation. Block II is thus glued to block
I in such a way that it lies in the future of block I and similarly, block III lies in the
future of block II. The horizons {r = r+} and {r = r−} are smooth null hypersurfaces of
(M∗, g). The fact that they are null is easily shown considering the metric induced by g
on hypersurfaces of constant r

gr = gttdt
∗2 + 2gtϕdt∗dϕ∗ + gϕϕdϕ∗2 − ρ2dθ2 .

This induced metric has determinent

det(gr) = −ρ2
(

gttgϕϕ − (gtϕ)2) = ρ2∆ sin2 θ

and thus degenerates for ∆ = 0, i.e. at the horizons. See figure 6.1 for a Penrose diagram
of Kerr-star space-time.

This construction is similar to what we did in Schwarzschild’s space-time, when we first
used Kruskal-Szekeres coordinates to show that the metric could be extended smoothly
across the horizon. In the Schwarzschild case, the maximal extension of the space-time fol-
lowed naturally by extending the domain of definition of the Kruskal-Szekeres coordinate
system. This we cannot do here since the domain of definition of Kerr-star coordinates is
already maximal. We shall need to use other coordinate systems which will allow us to
glue Boyer-Lindquist blocks in different manners.

Kerr-star coordinates were defined by modifying Boyer-Lindquist coordinates so that
incoming principal null geodesics could become coordinate lines. Using outgoing principal
null geodesics instead of the incoming ones, we obtain the star-Kerr coordinate system.
These geodesics are defined on all three blocks in Boyer-Lindquist coordinates by

ṫ =
r2 + a2

∆
, ṙ = 1 , θ̇ = 0 , ϕ̇ =

a

∆
.

Keeping r and θ, we introduce the new coordinates

∗t = t− T (r) , ∗ϕ = ϕ− A(r)
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Kerr−star space−time Star−Kerr space−time

I

I

II II’

III

III

Figure 6.1: Penrose diagrams of Kerr-star and star-Kerr space-times

where the functions T and A are the same used to define t∗ and ϕ∗. In the star-Kerr
coordinate system (∗t, r, θ, ∗ϕ), the outgoing principal null geodesics are the r coordinate
lines parametrized by s = r and the Kerr metric takes the form

g = gttd(∗t)2 + 2gtϕd(∗t)d(∗ϕ) + gϕϕd(∗ϕ)2 − ρ2dθ2

+2d(∗t)dr − 2a sin2 θ d(∗ϕ)dr . (6.16)

This gives rise to star-Kerr space-time which is the manifold

∗M = R ∗t × Rr × S2
θ,∗ϕ \

{

(∗t, r, θ, ∗ϕ) ; r = 0 and θ =
π

2

}

equipped with the smooth metric (6.16) and time orientation such that, in star-Kerr
coordinates, the null coordinate vector field ∂

∂r
, which is defined and smooth all over

∗M and whose integral lines are the outgoing principal null geodesics, is future pointing.
This space-time contains all three blocks, glued together at the horizons which appear as
regular null hypersurfaces. The gluing is done by requiring that the outgoing principal null
geodesics should cross the horizons smoothly. The time orientation reflects this choice ;
it is consistent with the fact that in Boyer-Lindquist coordinates ∂

∂t
is future pointing

outside the ergosphere in block I, but incompatible with − ∂
∂r

future oriented in block
II : in star-Kerr space-time, the inertial frames in bloc II are dragged outwards from the
inner horizon to the outer horizon. There is a canonical isometry between star-Kerr and
Kerr-star space-times. This isometry preserves the time orientation of blocks I and III
but reverses that of block II. Star-Kerr space-time can be seen as a block I, to the past of
which is glued a block II with its time orientation reversed, to the past of which is glued
a block III : it describes a “slow Kerr white hole”. See figure 6.1 for the Penrose diagram
of star-Kerr space-time (II′ refers to a block II with reversed time orientation).

6.2.2 Maximal slow Kerr space-time

The maximal analytic extension of slow Kerr space-time is constructed using both Kerr-
star and star-Kerr space-times. We start with Kerr-star space-time : all the incoming
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principal null geodesics are complete but the outgoing ones are not. The idea is to glue
other blocks so as to make the outgoing principal null geodesics complete. The solution
for blocks I and III is simple : we consider them as belonging to star-Kerr space-times,
i.e. we glue to the future of block III a block II′ followed by a new block I and to the
past of block I a block II′ preceded by a new block III. For block II, the situation is
trickier ; we also wish to understand block II as part of a star-Kerr space-time, but this
is incompatible with the time orientation of block II. The solution is to reverse the time
orientation of the whole star-Kerr space-time. We are thus led to gluing to the future of
block II a block III′ (block III with its time orientation reversed) and to its past a block I′

(block I with reversed time orientation). The resulting space-time is shown in figure 6.3.
We keep on extending this new space-time wherever a family of principal null geodesics is
incomplete. The extension is done step by step and is based on the same simple principle :
if a family of principle null geodesics is incomplete, it means that the Kerr-star (in the
incoming case) or star-Kerr (in the outgoing case) space-time which it generates lacks one
or two blocks ; this is cured by gluing the lacking blocks, bearing in mind the consistency
of the time orientation of the whole space-time. In this manner, we construct maximal
slow Kerr space-time (see figure 6.2) as a reunion of four types of space-times : Kerr-star
space-times, Kerr-star with their time orientation reversed, star-Kerr and star-Kerr with
their time orientation reversed. Important objects in this maximal extension are the so-
called Kruskal domains. They are “diamond shaped” reunions of four contiguous blocks.
At their “centre” lies a 2-sphere, referred to as the crossing sphere, where the horizons
intersect. Building this crossing sphere rigorously and extending the metric over it are
important difficulties in the construction of maximal slow Kerr space-time. This is done
by means of Kruskal-Boyer-Lindquist coordinates (see [50] for a fully detailed account).
There are two types of Kruskal domains, as shown in figure 6.4. Type II-III contains
two copies of block III ; it is not causal, therefore not globally hyperbolic, and contains
two timelike singularities (the ring singularity of each block III). Because of the lack of
causality, the notion of Cauchy problem is not even meaningful on type II-III domains.
Type I-II domains are much more gentle. They are globally hyperbolic and contain no
singularity. They can be treated in exactly the same manner as maximal Schwarzschild
space-time.

For a type I-II Kruskal domain, we consider a foliation {Sτ}τ∈R (see figure 6.5) by
Cauchy hypersurfaces such that, outside the domain of dependence of a neighbourhood of
the crossing sphere, for each τ ∈ R the hypersurface Sτ coincides in block I with the level
hypersurface Στ = {t = τ} of the time coordinate t of Boyer-Lindquist coordinates and in
block I′ with Σ−τ (suffice it to say that the Boyer-Lindquist coordinates in blocks I, II, I′

and II′ are defined unambiguously from the Kruskal-Boyer-Lindquist coordinates defined
on the whole domain). For such a foliation, the asymptotic behaviour of the metric g at
infinity on each slice Sτ is the same as the behaviour for fixed t and r → +∞ studied at
the beginning of the proof of theorem 6. Therefore, the Kruskal domains of type I-II thus
foliated are interpreted as space-times (with two asymptotically flat ends) of class (∞, δ)
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Figure 6.2: Maximal slow Kerr
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struction of maximal slow Kerr
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Sτ for τ < 0

Σ−τ

Σ−τ

II’

II

I’ I

t = 0

Sτ

t = 0

τ > 0

for Στ

Στ for 

τ < 0

for 

τ > 0for 

τ > 0

τ < 0for 

and its domain of dependence

a neighbourhood of the crossing
spheres at  t = 0

Figure 6.5: Foliation of a type I-II Kruskal domain
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for any δ > −2. This allows us to apply directly the theorems of section 4. We obtain
the existence and uniqueness of solutions to Dirac’s equation with values in L2, L2

µ for
all µ ∈ R, Hk for all k ∈ N, Hk

µ for all k ∈ N and µ ∈ R, on the slices Sτ . A simplified
interpretation is that Dirac fields are well-behaved at least as long as they do not cross
the inner horizon (either in the future or in the past).
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Chapter 7

Concluding remarks

As was remarked in [42], the fact that the spin-connection of a Ricci-flat space-time can
be regarded as a pair of pure gauge Rarita-Schwinger fields, may provide analytic means
of controlling the fall-off at spacelike infinity of solutions to Einstein’s vacuum equations,
assuming we can obtain some precise control on the weighted Sobolev norms of spin 3/2
fields. For such a project, it is of course vital to have existence theorems in weighted
Sobolev spaces for solutions to the Rarita-Schwinger equations. The theorems of section
4, by giving such existence results for symmetric hyperbolic systems, are a first step in
this direction. They can be applied directly to the Dirac form of the Rarita-Schwinger
equations. In order to work with the Witten form, we would need to control the non
local term. Whether this can be done regardless of the value of the weight remains to be
seen. The next step, namely the precise control in time of the weighted Sobolev norms of
Rarita-Schwinger fields, is difficult and requires detailed hypotheses on the evolution in
time of the spacelike geometry of our space-times.

Concerning Schwarzschild black holes, it would be interesting to study the behaviour
(explosive or not) of a smooth solution to Dirac’s equation as it approaches the singularity.
This poses the problem of the description of the Dirac field near the singularity. More
precisely, the norm of the spinor at a point is defined in terms of the timelike vector T a,
which can be determined by a choice of foliation or more simply by a choice of spin-frame.
This vector is normalized with respect to the metric, but at the singularity, the metric
blows up. It is therefore necessary to understand what the correct choice of spin-frame is
near the singularity before addressing the question of how Dirac fields behave there. The
non causal character of block III should discourage hopes of attempting similar studies
in Kerr space-time, or at least one should not think of it in terms of the behaviour of a
Dirac field as it propagates towards the singularity.

Another interesting and difficult problem is the construction of a time-dependent scat-
tering theory for Dirac fields on the exterior of a Kerr black hole. The point of view would
be that of an observer static at infinity. In spite of its ugliness, it may be necessary to use
the form of Dirac’s equation given in appendix B because it has the advantage of being
independent of time.
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Appendix A

A choice of spin-frame and the
expression of the time connection
terms in Kerr and Schwarzschild
geometries

We consider a general framework of which the exterior of both Kerr and Schwarzschild
black holes is a particular case. On

M = Rτ × Σx , Σ =]0,+∞[u×S2
Θ,Φ ,

we have a Lorentzian metric g of the form

g =
(N(x))2

2
dτ 2 − h(τ) .

The lapse function N is independent of time and satisfies

N ∈ C∞
b (Σ̄) , N > 0 on Σ , N |∂Σ = 0

where Σ̄ = [0,+∞[u×S2
Θ,Φ. h(τ) is a Riemannian metric on Σ, depending on time,

satisfying

h ∈ C∞ (Rτ ; C∞
b (Σ̄)

)

.

Moreover, there exist two continuous strictly positive functions C1 and C2 on R such that,
as a quadratic form, the metric h(τ) satisfies

C1(τ)h̃ ≤ h(τ) ≤ C2(τ)h̃ , for all τ ∈ R ,

where h̃ is the euclidian metric on Σ considered as R3 r B̄(0, 1) :

h̃ = du2 + (1 + u)2dΩ2 , dΩ2 = dΘ2 + sin2 Θ dΦ2.
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The vector field T a, timelike, future pointing, g-orthogonal to the foliation {Στ = {τ} ×
Σ}τ∈R and normalized so that TaT

a = 2 is given by

T a∂a =
2

N

∂

∂τ
.

These hypotheses are far weaker than the properties satisfied by Kerr or Schwarzschild
metrics outside the black hole, but they will suffice for the calculations we perform here.

A.1 A choice of spin-frame

We describe the choice of a Newman-Penrose tetrad {la, na,ma, m̄a}, the spin-frame
{oA, ιA} is then fixed up to an overall sign by requiring

la = oAōA′

, na = ιAῑA
′

, ma = oAῑA
′

, m̄a = ιAōA′

. (A.1)

Let us consider a global smooth coordinate system on Σ : {x1, x2, x3}. For example, we
can take

x1 = (1 + u) sin Θ cos Φ , x2 = (1 + u) sin Θ sin Φ , x3 = (1 + u) cos Θ .

With our choice of coordinate u in Schwarzschild and Kerr metrics, replacing Θ and Φ
by θ and ϕ in the Schwarzschild case, this coordinate system is smooth outside the black
hole. We simply assume here that u, Θ and Φ are sufficiently well chosen so that this
is also the case (alternatively, we need not be that explicit and we can simply consider
a given global smooth coordinate system on Σ). The metric h in this coordinate system
takes the form

h(τ, x) =
3
∑

a,b=1

hab(τ, x)dxadxb, hab = hba .

The coefficients hab satisfy the following properties

hab ∈ C∞ (Rτ ; C∞
b (Σ̄)

)

(A.2)

and for any ξ ∈ R3, for any (τ, x) ∈ R× Σ̄,

C1(τ) |ξ|2 ≤
3
∑

a,b=1

hab(τ, x)ξaξb ≤ C2(τ) |ξ|2 . (A.3)

We consider on (Rτ × Σ, g) a smooth global orthonormal Lorentz frame
(

1√
2
T a, Xa, Y a, Za

)

such that Xa, Y a, Za ∈ C∞ (Rτ ; C∞
b (Σ)

)

. (A.4)

Such a global frame exists because Rτ ×Σ is diffeormorphic to Rτ × (R3 \B(0, 1)) and is
therefore parallelizable. The family {Xa, Y a, Za} is for each τ ∈ R a global orthonormal
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section of the principal bundle (the bundle of local frames) of (Σ, h(τ)). Each vector field
is at each point an eigenvector of the matrix hab, normalized so that its norm with respect
to h is 1. The regularity of h and its equivalence (locally uniform in time and uniform in
space) to the euclidian metric on R3 \ B(0, 1), entail that Xa, Y a, Za can be assumed to
have the regularity (A.4).

We then define the Newman-Penrose tetrad as follows :

la =
1

2
T a +

1√
2
Xa , na =

1

2
T a − 1√

2
Xa , ma =

1√
2
Y a +

i√
2
Za .

All these vectors belong to C∞ (Rτ ; C∞
b (Σ)

)

. We choose the spin-frame (oA, ιA) by requir-
ing (A.1). It is adapted to the foliation {Στ}τ∈R since

T a = la + na = oAōA′

+ ιAῑA
′

.

A.2 The timelike connection terms

We introduce the directional covariant derivatives along the tetrad vectors

D := la∇a , D
′ := na∇a , δ := ma∇a , δ

′ := m̄a∇a .

We consider the Dirac equation on M written in terms of two-component spinors as an
evolution system (see (3.31))

{

∇T φA = 2DA
BφB +

√
2mTAB′ χB′

,

∇T χ
A′

= −2DA′

B′χB′ −
√

2mTBA′

φB.
(A.5)

The timelike connection terms are those coming from the timelike covariant derivatives
∇T φA and ∇T χ

A′

:

∇T φA = (D +D′)φA =
(

oB ōB′

+ ιB ῑB
′

)

∇BB′φA ,

∇T χ
A′

= (D +D′)χA′

=
(

oB ōB′

+ ιB ῑB
′

)

∇BB′χA′

.

Using the Newman-Penrose formalism, we calculate the components of ∇T φA and ∇T χ
A′

with respect to the spin-frame {oA, ιA} (see [53], Vol. 1, paragraph 4.5)







































ε0
A∇T φA = T a∂aφ0 − (ε+ γ)φ0 + (κ+ τ̃)φ1 ,

ε1
A∇T φA = T a∂aφ1 − (π + ν)φ0 + (ε+ γ)φ1 ,

εA′
0′∇T χ

A′

= T a∂aχ
0′ + (ε̄+ γ̄)χ0′ + (π̄ + ν̄)χ1′ ,

εA′
1′∇T χ

A′

= T a∂aχ
1′ − (κ̄+ ¯̃τ)χ0′ − (ε̄+ γ̄)χ1′ ,
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where the spin-coefficients ε, γ, κ, τ̃ , π and ν (we have chosen to denote by τ̃ the spin-
coefficient usually denoted by τ in order to avoid confusion with the time variable τ) are
defined by

ε =
1

2
(naDla +maDm̄a) , γ =

1

2
(naD′la +maD′m̄a) , κ = maDla ,

τ̃ = maD′la , π = −m̄aDna , ν = −m̄aD′na .

We have

T a∂a =
2

N

∂

∂τ

and therefore, the system (A.5) written in terms of spinor components in the spin-frame
{oA, ιA} has the form

∂φ

∂τ
= NIDφ+

mN√
2
χ+

N

2

(

ε+ γ −(κ+ τ̃)
π + ν −(ε+ γ)

)

φ ,

∂χ

∂τ
= N ÎDχ− mN√

2
φ+

N

2

(

−(ε̄+ γ̄) −(π̄ + ν̄)
κ̄+ ¯̃τ ε̄+ γ̄

)

χ ,

where the operators ID and ÎD were defined in (3.32) as

ID : φA 7−→ DA
BφB , ÎD : χA′ 7−→ −DA′

B′χB′

.

They are the restrictions of the operator − 1√
2
e0.DW

to SA and SA′

. In terms of Dirac

spinors, putting Ψ = φA ⊕ χA′

, the system above takes the familiar form

∂Ψ

∂τ
= − N√

2
γ0D

W
Ψ − imN√

2
γ0Ψ − N√

2
BΨ

and the matrix B containing the timelike connection coefficients is given by (for our choice
of spin-frame)

B =
1√
2









−(ε+ γ) κ+ τ̃ 0 0
−(π + ν) ε+ γ 0 0

0 0 ε̄+ γ̄ π̄ + ν̄
0 0 −(κ̄+ ¯̃τ) −(ε̄+ γ̄)









.

In order to study the behaviour of NB, we need to study the quantities N(ε+γ), N(κ+ τ̃)
and N(π + ν) :

ε+ γ =
1

2
(na(D +D′)la +ma(D +D′)m̄a) =

1

2
(na∇T la +ma∇T m̄a) ,

κ+ τ̃ = ma(D +D′)la = ma∇T la , π + ν = −m̄a(D +D′)na = −m̄a∇Tna .



A.3. EXPLICIT EXPRESSIONS IN THE SCHWARZSCHILD CASE 99

All the vectors of the Newman-Penrose tetrad belong to C∞ (Rτ ; C∞
b (Σ)

)

. Moreover

N∇T = NT a∇a and NT a∂a = 2
∂

∂τ
∈ C∞ (Rτ ; C∞

b (Σ)
)

.

Therefore, we conclude that

N(ε+ γ) , N(κ+ τ̃) , N(π + ν) ∈ C∞ (Rτ ; C∞
b (Σ)

)

.

This establishes the regularity of the matrix B :

B ∈ C∞ (Rτ ; C∞
b

(

Σ̄ ;M4(C)
))

.

A.3 Explicit expressions in the Schwarzschild case

Outside the Schwarzschild black hole, we consider the Newman-Penrose tetrad described
in Schwarzschild coordinates as

la∂a =
1√
2

(

F−1/2 ∂

∂t
+ F 1/2 ∂

∂r

)

, na∂a =
1√
2

(

F−1/2 ∂

∂t
− F 1/2 ∂

∂r

)

,

ma∂a =
1

r
√

2

(

∂

∂θ
+

i

sin θ

∂

∂ϕ

)

.

The coordinate basis is singular for θ = 0 and θ = π and so is the vector ma. The tetrad,
however, is adapted to the foliation and the spacelike part of la and na is

F 1/2 ∂

∂r
=

∂

∂u
∈ C∞

b (Σ̄) .

This tetrad in fact gives a smooth matrix B. The spin-coefficients for this choice of null
tetrad were calculated in [48] ; in particular, we have

ε = γ =
F ′F−1/2

4
√

2
, κ = τ = π = ν = 0

(we come back to the standard notation τ for the spin coefficient since there is no risk of
confusion with the time variable). Whence, the matrix B has the form

B =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









F ′F−1/2

4

and we see immediately that

N√
2
B = F 1/2B ∈ C∞

b (Σ̄) .
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Appendix B

An expression of the Dirac equation
outside a Kerr black hole

In the framework of the Newman-Penrose formalism, Dirac’s equation
{

∇AA′

φA = m√
2
χA′

,

∇AA′

χA′ = m√
2
φA,

takes the form (see for example [7])










































na∂a φ0 −ma∂a φ1 + (µ− γ)φ0 + (τ − β)φ1 = m√
2
χ1′ ,

la∂a φ1 − m̄a∂a φ0 + (α− π)φ0 + (ε− ρ)φ1 = − m√
2
χ0′ ,

na∂a χ0′ − m̄a∂a χ1′ + (µ̄− γ̄)χ0′ + (τ̄ − β̄)χ1′ = m√
2
φ1 ,

la∂a χ1′ −ma∂a χ0′ + (ᾱ− π̄)χ0′ + (ε̄− ρ̄)χ1′ = − m√
2
φ0 ,

(B.1)

where {la, na,ma, m̄a} is a Newman-Penrose tetrad such that

lan
a = 1 , mam̄

a = −1 , lam
a = nam

a = 0

and the spin-coefficients involved in equation (B.1) are defined by

ε =
1

2
(naDla +maDm̄a) , α =

1

2
(naδ′la +maδ′m̄a) , β =

1

2
(naδla +maδm̄a) ,

γ =
1

2
(naD′la +maD′m̄a) , ρ = maδ′la , τ = maD′la , π = −m̄aDna , µ = −m̄aδna .

In block I of a slow Kerr space-time described in Boyer-Lindquist coordinates, we consider
the Newman-Penrose tetrad used in [7]

la∂a =
1

∆

(

(r2 + a2)
∂

∂t
+ ∆

∂

∂r
+ a

∂

∂ϕ

)

,
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na∂a =
1

2ρ2

(

(r2 + a2)
∂

∂t
− ∆

∂

∂r
+ a

∂

∂ϕ

)

,

ma∂a =
1

p
√

2

(

ia sin θ
∂

∂t
+

∂

∂θ
+

i

sin θ

∂

∂ϕ

)

,

where p = r + ia cos θ. The corresponding spin-coefficients, likewise described by S.
Chandrasekhar in [7], are

κ = σ = λ = ν = ε = 0 , ρ̃ = −1

p̄
, β =

1

2p
√

2
cot θ , π =

ia sin θ

p̄2
√

2
,

τ = −ia sin θ

ρ2
√

2
, µ = − ∆

2ρ2p̄
, γ = µ+

r −M

2ρ2
, α = π − β̄ ,

where we have denoted by ρ̃ the spin-coefficient in order to avoid confusion with ρ2 =
pp̄ = r2 +a2 cos2 θ. Thus, we obtain the following expression of the Dirac equation outside
the black hole :

r2 + a2

2ρ2

∂φ0

∂t
− ia sin θ

p
√

2

∂φ1

∂t
− ∆

2ρ2

∂φ0

∂r
− 1

p
√

2

∂φ1

∂θ
+

a

2ρ2

∂φ0

∂ϕ
− i

p
√

2 sin θ

∂φ1

∂ϕ

−r −M

2ρ2
φ0 −

(

ia sin θ

ρ2
√

2
+

cot θ

2p
√

2

)

φ1 =
m√
2
χ1′ , (B.2)

r2 + a2

∆

∂φ1

∂t
+
ia sin θ

p̄
√

2

∂φ0

∂t
+
∂φ1

∂r
− 1

p̄
√

2

∂φ0

∂θ
+
a

∆

∂φ1

∂ϕ
+

i

p̄
√

2 sin θ

∂φ0

∂ϕ

− cot θ

2p̄
√

2
φ0 +

1

p̄
φ1 = − m√

2
χ0′ , (B.3)

r2 + a2

2ρ2

∂χ0′

∂t
+
ia sin θ

p̄
√

2

∂χ1′

∂t
− ∆

2ρ2

∂χ0′

∂r
− 1

p̄
√

2

∂χ1′

∂θ
+

a

2ρ2

∂χ0′

∂ϕ
+

i

p̄
√

2 sin θ

∂χ1′

∂ϕ

−r −M

2ρ2
χ0′ −

(

−ia sin θ

ρ2
√

2
+

cot θ

2p̄
√

2

)

χ1′ =
m√
2
φ1 , (B.4)

r2 + a2

∆

∂χ1′

∂t
− ia sin θ

p
√

2

∂χ0′

∂t
+
∂χ1′

∂r
− 1

p
√

2

∂χ0′

∂θ
+
a

∆

∂χ1′

∂ϕ
− i

p
√

2 sin θ

∂χ0′

∂ϕ

− cot θ

2p
√

2
χ0′ +

1

p
χ1′ = − m√

2
φ0 . (B.5)

We can express this system as an evolution equation ; we do this for the Weyl anti-neutrino
equation, i.e. for equations (B.2), (B.3) with m = 0. This gives also the evolution form
for the Weyl neutrino equation (equations (B.4), (B.5) with m = 0) and for the complete
Dirac equation with a modification of the mass term which we mention below. We write
the Weyl anti-neutrino equation in the following manner

(

1 b1(r, θ)
b2(r, θ) 1

)

∂φ

∂t
+

(

−1 0
0 1

)

∆

r2 + a2

∂φ

∂r
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+

(

0 c1(r, θ)
c2(r, θ) 0

)

∂φ

∂θ
+

(

a
r2+a2 d1(r, θ)

d2(r, θ)
a

r2+a2

)

∂φ

∂ϕ
+ V (r, θ)φ = 0 , (B.6)

where

b1(r, θ) = − 2ρ2

r2 + a2

ia sin θ√
2(r + ia cos θ)

, b2(r, θ) =
∆

r2 + a2

ia sin θ√
2(r − ia cos θ)

,

c1(r, θ) = − 2ρ2

r2 + a2

1√
2(r + ia cos θ)

, c2(r, θ) = − ∆

r2 + a2

1√
2(r − ia cos θ)

,

d1(r, θ) = − 2ρ2

r2 + a2

i√
2 sin θ(r + ia cos θ)

, d2(r, θ) =
∆

r2 + a2

i√
2 sin θ(r − ia cos θ)

and V (r, θ) is the matrix of all the potential terms in equations (B.2), (B.3) with m = 0.
The matrix in front of the time derivative is invertible since

det

(

1 b1(r, θ)
b2(r, θ) 1

)

= 1 − ∆a2 sin2 θ

(r2 + a2)2

is positive (and even uniformly bounded away from zero and bounded) in block I. There-
fore, putting

B(r, θ) =

(

1 b1(r, θ)
b2(r, θ) 1

)−1( −1 0
0 1

)

∆

r2 + a2
,

C(r, θ) =

(

1 b1(r, θ)
b2(r, θ) 1

)−1(
0 c1(r, θ)

c2(r, θ) 0

)

,

D(r, θ) =

(

1 b1(r, θ)
b2(r, θ) 1

)−1( a
r2+a2 d1(r, θ)

d2(r, θ)
a

r2+a2

)

,

P (r, θ) =

(

1 b1(r, θ)
b2(r, θ) 1

)−1

V (r, θ) ,

we can write equation (B.6) as the evolution equation

∂φ

∂t
+B(r, θ)

∂φ

∂r
+ C(r, θ)

∂φ

∂θ
+D(r, θ)

∂φ

∂ϕ
+ P (r, θ)φ = 0 . (B.7)

For the full Dirac equation, we obtain the following evolution system :

∂φ

∂t
+B(r, θ)

∂φ

∂r
+ C(r, θ)

∂φ

∂θ
+D(r, θ)

∂φ

∂ϕ
+ P (r, θ)φ

=

(

1 b1(r, θ)
b2(r, θ) 1

)−1
m√

2(r2 + a2)

(

0 2ρ2

−∆ 0

)

χ , (B.8)

∂χ

∂t
+ B̄(r, θ)

∂χ

∂r
+ C̄(r, θ)

∂χ

∂θ
+ D̄(r, θ)

∂χ

∂ϕ
+ P̄ (r, θ)χ

=

(

1 b1(r, θ)

b2(r, θ) 1

)−1
m√

2(r2 + a2)

(

0 2ρ2

−∆ 0

)

φ . (B.9)
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