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Abstract - We study the linear Dirac system outside a spherical Black-Hole. In the case of massless
fields, we prove the existence and asymptotic completeness of classical wave operators at the horizon of the
Black-Hole and at infinity.

Résumé - On étudie le systeme linéaire de Dirac a U'extérieur d’un Trou Noir sphérique. Dans le cas des
champs sans masse, on montre ’existence et la complétude asymptotique des opérateurs d’onde classiques a
I’horizon du Trou Noir et a I'infini.

1 Introduction

We develop a time-dependent scattering theory for the linear Dirac system on Schwarzschild-type metrics.
The first time-dependent scattering results on the Schwarzschild metric were obtained by J. Dimock [8].
Using the short range at infinity of the interaction between gravity and a massless scalar field, he proved the
existence and asymptotic completeness of classical wave-operators for the wave equation. The case of the
Maxwell system in which the interaction is pseudo long-range has been worked out by A. Bachelot [2], and
for the Regge-Wheeler equation, a complete scattering theory has been developed by A. Bachelot and A.
Motet-Bachelot [3]. Our purpose in this work is to study the classical wave operators and their asymptotic
completeness for the linear massless Dirac system on a general ” Schwarzschild-type” metric which covers all
the usual cases of spherical black-holes. The main tools are Cook’s method for the existence and the results
obtained in [3] for the asymptotic completeness.
Let us consider the manifold R; x]0, +00]; ><5’37 » endowed with the pseudo-riemannian metric

gupdatdr” = F(T)e%mdt2 — [F(r)Ydr? + r?d6* + r?sin®0d¢?] (1)

where F,§ € C*(]0,+00[.). We assume the existence of three values r, of r, 0 < r_ < rg < ry < 400,
which are the only possible zeros of F', such that

F(r,)=0, F'(r,) =2k, Kk, #0 , if 0<r, < +o0,
F(r) >0 forr €]rg,ry| , F(r) <0 forr €lr_,rol.
When they are finite and non zero, r_, g and 7 are the radii of the spheres called: horizon of the black-hole

(ro), Cauchy horizon (r_) and cosmological horizon (ry). k, is the surface gravity at the horizon {r = r,}.
If r is infinite, we assume moreover that

Fir)y=1-2240(r2) , >0, 6(r)=08(+00)+o(r™!) , r— oo,
F'(r), &'(r) =0(r72), r— +oo.



All these properties are satisfied by usual spherical black-holes (see [13]).
Notations: Let (M, g) be a Riemannian manifold, C§° (M) denotes the set of C*°functions with compact
support in M, H*(M, g), k € IN is the Sobolev space, completion of C§°(M) for the norm

k
2 i = V£ VI Y dp,
1 e cary ;/M< FNf) du

where V7, di and <, > are respectively the covariant derivatives, the measure of volume and the hermitian
product associated with the metric g. We write L2(M, g) = H°(M, g).

If E is a distribution space on M, E.mp represents the subspace of elements of £ with compact support
in M.

The 2-dimensional euclidian sphere S? is endowed with its usual metric

dw?® = df* + sin*0dp?® , 0< O <7, 0< ¢ <2m.

2 The covariant generalization of the linear Dirac sys-
tem on Schwarzschild-type metrics
The covariant generalization of the Dirac system on the metric g has the form
(P"Vy—m)® =0, m>0 2)

for a particle with mass m, where ® is a Dirac 4-spinor, the " are the contravariant Dirac matrices on
curved space-time and V, is the covariant derivation of spinor fields. We make the following choices of flat
space-time Dirac matrices

(o0 O o 0 oa _
’VO_( 0 O'0> ’7@_(0_0[ 0 ) a_152>3 (3)

wo(39) me (1) e (07) (3 0) o

are the Pauli matrices, and of local Lorentz frame

where

[ g™ if a=n
ea”{ 0 if a#p 5)

We recall that flat space time Dirac matrices are a set of 4x4 matrices {74 }y<5<5 such that

{%7,’75} =875 + 1578 = 20,51 (6,5 =0,1,2,3) (6)

where
77@@ :diag(lv_la_lv_l) (7)

is the Minkowski metric. The indices with a tilde refer to flat space-time and can be raised or lowered using
Najs whereas the indices without tilde refer to curved space-time and are raised or lowered using the metric
g.

With these definitions, the 4* and V, are then defined by (see for example [5], [7])

M =ae™ (8)
and ) B
V, =0+ iG[&@]waﬁ# (9)
where 1 1
Glag = 3 {7&#@} =1 (%ﬂg - 757&) (10)

(\]



are the generators of the spinor representation of the proper Lorentz group and

3 1 - 3 3 1 5 < ~ 1 -~ 5 < . 3
waﬂu _ §€OW (eﬂy’u _ 65,4,,,) _ 5661/ (ea,,’ﬂ _ €ap,’,,) + 56(”/650 (6’YV’U _ e’yo’y) e = _wﬁau (11)

are the coefficients of the spin connection, , standing for the derivation with respect to the p-th variable.
We compute the a priori non zero components:
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WP = 2 [0, (¢P) — 0, ()] — 567 [0 () — 0, ()] + 56" [0, (%) — 81 (2)] egp =0,
= e [0, () 0. (0)] = 36 [0 () — 0 (7 )] + 5™ [0 (¢72) — 0 (7)) ere = 0,
By = Lo o () = 0 (0)] ~ 269 00 () — 00 ()] + 7 [0 () - 0, (65)] e = 72
WPy = LT[0, (¢F,) ~ 0, ()] — 5eP [0r (7,) — 0, ()] + 57 [0, (¢71) — 0 (7)) enr = 0,
= 210, (67,) = 0, (65,)] ~ 267 0, () 0, ()] + 277 ER [0, (51) — 0 (¢%,)] e

= F'2sing,

- 1 - ~ ~ 1 . 5 1 5, - ~ .
W, = 5690 [0, (¢70) = Do (e75)] — §€W {890 (60w> — 0, (eowﬂ + ieeeew [0, (¢70) = Do (¢75)] egp
= cosf.

and we obtain the following expression for the linear massive Dirac equation outside a spherical black-hole:

G 1 1 F 0 F'Y20 1
0 6.1 - - e 2 -
{’yﬁtJrFefy <5‘T+r+4F+2>+ vy <8e+200tg0>+
F1/2 5
rsmz 3o, + iF1/265m} d = 0. (12)

We introduce the frame with respect to which we shall express the equation, R’ = ( L_9 —%89, FY/ 2&),

rsinf ¥
image of R = (F1/2ar, %89, ﬁdp) by the spatial rotation f with Euler angles (see for example [15])
(p,0,v) = (0,7/2,7), and the Regge-Wheeler variable r, defined by

dr
= Fe? 7 elro,ry|. (13)

The spinor
U =Ty F4e’20, (14)



where T{;-1) is the spin transformation associated with the rotation f —1 satisfies

- Fl/2¢0 - - 1 F1/2¢0
oV =iHV , H=1 {woﬁy?’@m — 70~2 (89 + 2007599) eyt 718 + ZPyOFl/Qe‘Sm (15)
T

on the domain Ry x R,, x S? representing the exterior of the black-hole in the variables (¢, r.,w).
We recall (see [7]) that, given a spatial rotation f of angle § around a unit vector n = (ny,n2,n3), its
associated spin transformation T is

Ty = Exp { [an[Q’g] +noGzq) + n3G[i’§]} 9} (16)

where Exp is the exponential mapping.

3 Global Cauchy problem

We introduce the Hilbert space
H={L*(R,, x $2;dr? +du?)}". (17)

Theorem 3.1. Given Vg € H, equation (15) has a unique solution ¥ such that
v el (Rt,H) s U |t:O: \Ifo. (18)
Moreover, for any t € R
@5 = Yol - (19)
Proof: We show that the operator )
H=H+~"FY%m (20)

is self-adjoint with dense domain on H. We decompose H using generalized spherical functions of weights
1/2 and —1/2. Let
IT=A{(l,m,n); 2l,2m,2n € ZZ ; 1 — |m|,l — |n| € N} (21)

and for any half-integer m

For (I,m,n) € Z, we define the function T ,, of (¢1,6,p2), @1, 92 € [0,27[, 6 € [0, 7], by
T (01,0, 02) = €92 g, (e (23)

l

where u,,,, satisfies the following ordinary differential equations

d*ul, dul, n? — 2mncost) + m?
tgo I(l+1) - fon = 24
d02 + co g d9 + ( + ) 827129 mn 07 ( )
dul,, n—mcost , : /2,0
do - sind Upyp = 2 [(l+m)(l_m+ 1)] U — 1,n (25)
Qg M =m0 1t D) - m)] (26)
de sing mn T " " YmtLn
and the normalization condition - )
l 2
0 0do = —. 27
| Vb @) sinto = = (21)
We know from [12], that {T}nn}(l,m,n)eI% is a Hilbert basis of
L2 ([0,27[,, x[0, 7] X [0, 27 [, ; sin*0dp} + dO* + dep3) . (28)

Thus, for any half-integer m,
—ing, 1
{ n(,0,0) = e uy, (9)}(l,n)€Im

4



is a Hilbert basis of L2(S2;dw?). In particular,

where

Hln = { ¢ (flTl_%7n?fQTé7n7f3Tl_%,n7f4Téyn) ; fi € LQ(]RT*’dTE) ) 1= 172a374}a

or equivalently,
4
Hin = [LZ(]RT*;dTE)] QFn 5 Fin= k (Tl_%,anéanl_%m’Tén)
where the Tli 1, are seen as functions of only ¢, 6. Let
3

U= ! (flaf27f37f4) & ETL € Hln~

Denoting o = F*/2¢% the four components of HU are

. a 1 e
i0p fsT' 1 o — —Jfa| O0g + scotgld T T i—— f48¥,Ti >
27 r 2 20 rsinf 20

rsind

. ! @ 1 ! @ l
_Zar* f4T%7n —|— ;fg (8@ + 2cotg9) T—%,n + 27f38¢T_%,n,

1
0 AT s — S fo (g + —cotgh ) TL  +i—— f0,T" |
2 r 2 2 rsinf 2>

(07

1
~i0y foT3 , + % fi (ag - 2601599) T, +i F10,T, .

rsind

Relations (25) and (26) yield

1 1 - n 1 . 1 1

<89 + 2cotg9> T%,n = sin@T%v" —1 (l + 2) T—%,n’
1 — 1

O+ =cotgd | T', =1t —if1+=)T1L
2 2" gingd T 2 PR

0Ty 1 ,(¢,6,0) = —inTL, (,6,0).

and we also have

Thus, the four components of HU are

We see that on Hy,, H has the form

) 1
H |y, = <i3r*L + % (l T 2) M> ® 1.,

*

where the matrices L et M, defined by

0 0 1 0 0 0 0 ¢
0 0 0 -1 0 0 — 0
L= 10 0 O M= 0 ¢« 0 O
0 -1 0 O - 0 0 O



are hermitian and L is invertible. Since the function ar—! belongs to L=(R,.,), H |7, is self-adjoint with

domain .
Dy = [D(i0,.)]' ® Fin ~ [H'(R,.;dr?)]" © Ry, (37)

dense in H;,. On Dy, we choose the following norm

2

. « 1
U= (oS fo S @ Fin € D 1913, = 1910y s + H (10242 (143) ) w (39)
n T 2 2 4
(L2(R))
and we introduce the dense subspace of H
D(H) = U= Z \I’ln 5 \I/ln € Dln ) Z HlI/ln”?jlﬂ < 400 ;. (39)

(l,n)EI% (l,n)GI%

H is self-adjoint on H with domain D(H), véam is self-adjoint and bounded on H, therefore, H is self-adjoint
on ‘H with dense domain D(H). Theorem 3.1 follows from Stone’s theorem.

Q.E.D.
4 Wave operators at the horizon
When r — rg, the operator H has the formal limit
Hy = i79430,. (40)
which is a self-adjoint operator on H with dense domain
D(Hy) = {H" [(Ry.;dr?) ;12 (82 d?)] } . (41)

The spectrum of Hy is purely absolutely continuous. We define the subspaces of incoming and outgoing
waves associated with Hp:

HSE = {\I/ = (ul,u2,u3,u4) cudt=Tgut ) ult = :|:u2}. (42)

Hoi as well as the H;,, remain stable under Hy and we have
H=H{ ®Hy , Y¥eHF, (M) (r,w)=T(r£t,w). (43)
Since we want to compare H with Hy in the neighbourhood of the horizon, we introduce the cut-off function

XOGCOO(RT*) , 0<x0 <1,
da,be R , a<b such that (44)
for re <a xo(r«)=1 ; for re>b xo(r«) =0

together with the identifying operator

H — H
Jo: U — xoV. (45)
We consider the classical wave operators
WiV = s—lim e " et W, in M.
(46)
t — +oo

Theorem 4.1. The operator W (resp. Wy ) is well-defined from HZ (resp. Hy ) to 'H, is independent of
the choice of x, satisfying (44), moreover

Vo € HE |[WEBoll,, = [ Wolly (47)



Proof: We apply Cook’s method. Jy being a bounded operator, it suffices to prove that for

Vo €D}, D =Hg N MmN [CF Ry, x $2)]" . (Ln) €Ty (48)
we have _
|(HZo — Zo Ho) 70"y ||, € L (£t > 0). (49)
Let for (I,n) € 7,
Uy € D}f, Supp¥y C [-R,R],, x S2 , R>0, (50)
then .
HeHoty, = <i8r* + % <l + 2) M — ozm’y()) Wo(re + 1),
and

HoeiHot\I’O = ’L.ar* L\Ilo(T* + t)

U, being compactly supported, for ¢ large enough,

H(HIO —ZIoHy) eiHOt\IJOHH = H <fj <l + 1) M — Ozm’yé> ettty

2
1\ «
SH(Z+>+am
2)r

« is rapidly decreasing in r, when r — rq, therefore

H

1oll2-

L~ (—R—t,R—t)

|(HZo — ZoHo) "Wy ||, € L* (t > 0)

and WJ is well-defined. The same proof can of course be applied to W;". Furthermore, if ¥, € ’Hg[, we
get from (43) that the energy of e/#0!W; in a domain of R,.. x S2 bounded to the left in 7, vanishes when
t tends to infinity, which gives (47). If now we consider two different cut-off functions x, and x/, and the
associated identifying operators Jy and Jj, the difference x, — x/, is compactly supported, thus

e~ FoetHot By — efthjO’eiHot\IlOHH —0 , t— zoo.
Q.E.D.

Remark 4.1. In the case where r is finite, we construct in the same way classical wave operators at the
cosmological horizon
WEUg = s—lim e Hi ety in H
t — +oo

(51)

where the identifying operator Jy is defined by

H — H
Ji: U 0, (52)
x1 being a cut-off function
x1 €C*(R;,), 0<x1<1,
da,beR , a<b such that (53)

for re<a xi(re)=0 ; for ro>b xi(r.) =1

Wit (resp. W, ) is an isometry from Hy ( resp. HS') to H and is independent of the choice of x1 satisfying

(53).



5 Wave operators at infinity (massless case)

In all this paragraph, we shall assume that ry = +o00; the metric (1) is then asymptotically flat in the
neighbourhood of infinity and we choose to compare H to an operator H., which is equivalent to the
hamiltonian operator for the Dirac equation on the Minkowski space-time. We also make the hypothesis
that m = 0 in order to avoid long range perturbations at infinity. Let us consider on the Minkowski metric

ds = dt* —da® —dy* —d2* ; zyz€R (54)

the massless Dirac system
{10 +10, ++%0, +~%0.} @ =0, (55)

The associated hamiltonian operator, defined by
Hpg =iy {viax +9%0, + 7‘5’32} : (56)

is self-adjoint with dense domain on [L2 (R x Ry x ]RZ)]4 and if ® € C (]Rt; [L2 (Ry x Ry x ]RZ)]4) is a
solution of (55), its energy in a compact domain goes to zero when ¢ goes to too. In addition, for any
Py € [L? (R, x Ry x ]RZ)}4 with a compact support contained in

BO,R) = {(z,5.2): 0<p<R, p=(a®+y*+22)"}, (57)
the solution ® of (55) associated with the initial data @ satisfies
O(t,z,y,2) =0 for 0<p<|t|— R. (58)

At the point of spherical coordinates (p, 8, ), we apply the spatial rotation f with Euler angles (7/2,0, m—¢).
The local frame (9., d,, d.) is thus transformed by f~! into

1 -1
(axl,amé,@zii) - <p827’LH © pag,ap) . (59)
The spinor
U = pT;®, (60)

where T is the spin transformation associated with f defined in (16), satisfies

-~ 1 -~ o~ 1 - -
OV =iH VvV |, Hy=1 70738,, — =% 9p + =cotgh | + — 70716@ . (61)
p 2 psind

The operator Hy, on
4
Mo = {L2 ([0,+oo[p x S2 . dp?+ de)} (62)
is unitarily equivalent to Hxq on
{L* (R, xRy x R, ; da®+dy? +d2%)}"

Therefore, Ho, is self-adjoint with dense domain on Ho, and if ¥ € C (Ry, Hoo) satisfies (61), then its energy
in a compact domain goes to zero when ¢ goes to +o00. Moreover, for

Vo€ Hoo Supp(\IJO) - B(O7R)

U(t) = etH=! satisfies

In order to avoid artificial long-range interactions, we choose

p=r.>0 (64)



and we introduce the cut-off function

Xoo € COO ([O7+OO[7*) 9 O S Xoo S la
Jd0<a<b<4oo suchthat
for0<r, <a Xeo(rs) =0 , forr.>b xoolrs)=1

together with the identifying operator

(j\Ij) |{r*20}: Xoo ¥,
Jo i Hoo — H ; for¥eHy,
(JTY) l¢r.<0y= 0.

We define the classical wave operators

WEWo = s—1lim e HtF eH=tWy inH.
t — +oo

(66)

(67)

Theorem 5.1. The operators WL are well-defined from Ho, to H, are independent of the choice of oo and

VU € Hoo ,  |[WETol|,, = 1Tolly_ -
Proof: For (I,n) € T 1, we introduce the subspaces of Ho,
Diy ={¥ = "(f1, f2, f3. f1) ® Fin € Hoo3 1 <0 <4 fi € C5° (R])}

the direct sum of which is dense in Ho,. For ¥ € Dy,

1 1
H |Dz°§: (i@T*L—% o (l+ 2) M) ® 1,

where the matrices L and M are defined by (36), and
Jx¥o € Hyp,.
Jso being a bounded operator, it suffices to prove that for
Vo € Dy, 5 Supp(Vo) C B(0, R),

we have }
|(HToo — TocHoo) €Wy ||, € L' (Ry).

(63) yields 4
ety =0 in {(t,r.,0,0); 0<r, <|t| — R}.

Thus, for |¢| large enough

170 = oty ol = (= ) (1) et
H

T T«
1
< (t+3) 190l

We study the asymptotic behavior of

o 1

T

L= ([[t[+ R, 40,

e_1 - 1 (F1/265Tl _ 1)
r

when r, goes to +00. The Regge-Wheeler variable r, is defined with respect to r by

1 " 1 2/6‘,0
«=—1L —ro| — ——=d
r 2/{0{ og|r — o /TO [r—ro Feﬁ] r}

9

(68)

(69)



where 2kg = F'(rg). For r larger than ro + 1, we have

r

re =C+ F~le %dr (76)
ro+1
where o
o 1 2K0
2k9C = — — —— | dr. 7
o /ro {r—ro Fe5] " (77)

F and § satisfy
S(ry=o(r=Y ; F(r)= 1—%—%—0(7”_2) r1>0; r— 4o

and therefore ,
F'(r)e ™ =14 2L 4 o(rh),
r

7« =1+ r1Log(r) + o(Log(r)),
FLY2()ed0) =1 — ;—; +o(r™)

which implies

" L L -~ _
1[71/2(r)ezS(r)7’7 e oi(r) ‘o ( Oi(r)> —O(12) = 0T,

The operators Wi are thus well-defined. The fact that they are isometries and do not depend on the choice
of the cut-off function can be verified using exactly the same remarks as in the case of the horizon.

Q.E.D.

6 Asymptotic completeness of operators Woi and W7
(massless case)

We assume again that m = 0 and ry = +00. We introduce the inverse wave operators at the horizon and at
infinity, defined for ¥y € H by

WiWo = s—lim e "ol Jrxeifty, in H, 78
t — +oo ( )

WEWo= s—lim e et gxeHtW, in H,,
t — +o0 (79)

where J; and JZ% are respectively the adjoints of Jy and J. We also define the wave operators W+ and
W~ by
Vo e Hy , Vo € Hoo W (W, Uoo) = WU + WED, (80)

as well as the inverse wave operators W+, W-
Ty e H WEw, = (Woi%, Woio%) . (81)
Eventually, we define the scattering operator
S=w*tw-. (82)

Theorem 6.1. Operators Wi (resp. WE) are well defined from H into HE (resp. from H into Mo ), are
independent of the choice of X, (Tesp. Xoo) and their norm is lower or equal to 1. Moreover

I/I/i is an isometry of H(jf X Hoo onto 'H.
W= is an isometry of H onto Hg[ X Heo-
S is an isometry of Hy X Heo onto Hg X Heo-

10



Proof: For any solution ¥ of (15) in C (R¢; Hyy), (I,n), € I%, we construct asymptotic profiles at the
horizon and at infinity. The idea is that each component of ¥ satisfies an equation of the form

(02— 32 +V(r)) £ =0 (53)
where the potential V' has the following properties

VoV, -V ; V., V. >0,
Vi(ry) <COA+re)7t72 , >0, (84)
Vo(r,) <CA+]r.])"2° , e>0.

We then apply the scattering results of [3]. This suffices to define Woi, but to prove the existence of ng,
we need to recover a solution of (0; —iHo )V = 0 from the asymptotic profile at infinity.
Firstly, we study some spectral properties of the operator H:

Proposition 6.1. The point spectrum of H is empty.
A straightforward consequence of proposition 6.1 is

Corollary 6.1. For k € IN, the direct sum of the sets

L ={H"U; U= "(f1,fo, f5, f1) @ Fin € Hin, 1<i<4 fi €CP(R,,)} 5 (In) € 1, (85)
is dense in H.
Proof of proposition 6.1: Let
4
\I]ln - (b ® —Fln € Hln 3 ¢ =1 (f17 f2a f3a f4) S [LQ(IRa de)] (86)
such that
HVY,, =V, ; A€ R. (87)
Equation (87) is equivalent to
fi==DBif2 —i\fs,
fa==Bifr +iXfa, 1\ F1/248
e
ﬁl(r*) = (l + 2) r . (88)
f3=—Bifa —irf1,
fi==Bifs +irfz,
We first consider the case A = 0. Putting
a=h+f, g=f-h
(89)
g3=1Jfs+[f1 . ga=fa—[s,
we see that g; and g3 are solutions of
g =-B9, (90)
while go and g4 satisfy
f= 01 (91)
Thus A = 0 is an eigenvalue for H if and only if there exists [ = % +k, k € N, such that both equations (90)
and (91) have solutions in L? (R, ;dr?). 3 being smooth on R, any solution of (90) or (91) in Lj,.(R) is
necessarily smooth. Moreover, §; decreases exponentially when r, goes to —oo, thus
vrleR pelLl (- 00,1} ) (92)
and both integral equations
fe) =1+ [ o, (93)

11



st =1- [ " Bgdr, (94)

have a unique solution in L>° (] — o0, ri* [), which can be extended on R as a smooth but not square integrable
function. Therefore, (90) and (91) have no non trivial solution in L?(IR) and A = 0 is not an eigenvalue for
H.

If now we suppose A # 0, the components of ¢ satisfy

1= (687 = A2) fr — B fo,

y = (67 = N°) fa = G111,
(95)
3 = (87 = XN?) fs = B fa,
1= (87 = X2) fa— B fs.
Functions g1 = f1 + f2 and g3 = f3 + f4 are eigenvectors in L?(IR) for the operator
Ly = =02 + BP(r.) = Bi(rs) (96)

associated with the eigenvalue A\? > 0, whereas g2 = fo — f1 and g4 = f4 — f3 are eigenvectors in L?(R) for
the operator

Ly = =07 + B (r) + Bi(rs) (97)
associated with the eigenvalue A2 > 0. It is easily seen that potentials
Vi(r.) = B7(re) = Bi(r) (98)
and
Va(rs) = B (re) + B1(r) (99)

satisfy (84). Therefore, the operators L; and Lo are of the same type as the second order operators studied
in [3] and have no strictly positive eigenvalue.

Q.E.D.

Proof of corollary 6.1: For (I,n) € Z% and k € N, if

U=0®F, €M ; ¢<lCF R,

then ¥ belongs to D (Hk |Hln)' El’jL is well-defined and is a subset of H;,. To prove corollary 6.1 it suffices
to establish that for (I,n) € 7, and k € N, EF is dense in Hyy,. Let

Vo = ¢o @ Fpy € Hin

be orthogonal to £F,. Then, for ¢ € [C5° (R, )"
(¢07 Hk |'H1,n ¢)L2(RT*) = 07
HP* |3, being here considered as an operator on [L*(R,., )]4. We have

H* |3, 6o =0 in [D'(R,)]* (100)

where D'(R,.,) is the space of distributions on R,.,. From (100), we deduce that ¥ belongs to D(HF |4,.)
and
H*Wo =0 in H,. (101)

We know by proposition 6.1 that (101) has no non-trivial solution in H;,. Thus El]jb is dense in Hy,.

Q.E.D.
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We also study the spectral properties of operators Ly, Ly. We recall their definition for I — 1/2 € N
i=1,2 Li=—02 +Vi(r.) 3 Vi(r) = B(r.) + (—1)B(r). (102)
Proposition 6.2. Forl—1/2 € IN, the spectrum of operators L1 and Ly is purely absolutely continuous.

Proof: We already know that potentials V7 and V5 satisfy (84), which, from [3] implies that the singular
spectrum of Ly and Ly is empty, that their absolutely continuous spectrum is [0, +oo[ and that their point
spectrum contains at the most a finite number of negative or zero eigenvalues, all of them being simple.
Furthermore, V7 and V5 decrease exponentially when r, — —oco and 0 is not an eigenvalue. We show that
Ly and Lo do not have any strictly negative eigenvalue either by a method similar to the one used in [3].
We recall that for [ —1/2 € N, equations

1<i<2 Lif=0 (103)

both have on R,, a unique continuous strictly positive solution, given respectively by (93) and (94). We
consider the general case of a potential

Ve L*(R,, )N L*R,,) (104)

such that there exists a function g, continuous and strictly positive on R,.,, satisfying

Lyg=0 ; Ly=-0> +V. (105)
Let f € L*(R,,) be such that
Lvf=-=\f , XA>0, (106)
which implies
feH*(R,,). (107)

We define the cut-off function

1

X €CP(R,,), for|r < 3 x(re) =1, forlri>1 x(rs)=0. (108)

Putting for n > 1

T

falr) = x () £), (109)

we easily see that
[ (P avinP)a=-x[ i o). (110)

—nn —5.%

Thus, for n large enough

/[—n . [|f7ll|2 +V \fnﬂ dr, < 0.

The operator —92, + V on L?([—n,n]) with domain {y € H*([-n,n]); y(+n) = 0} has a strictly negative
eigenvalue —\,, associated with an eigenvector u

—u"+Vu=- u; —n<r,<n,
(111)
u(—n) = u(n) = 0.

Even if it means changing v into —u, there exist o and 3 such that

—n<a<pf<n,
u(a) =u(B) =0, u(a) >0, v(B) <O, (112)
u>0 for a<r,<p.

We denote 5
I:/ (W'g—ug") dr,.
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On the one hand, we can write
I=u/(B)g(8) — ' (a)g(e),

g being strictly positive on R, (112) yields
I <O0.

On the other hand
A
(W'g—ug') =u'g—g"u=—-Aug,

thus
B
I = )\n/ ugdr, > 0.
We end up with a contradiction, which means that Ly has no strictly negative eigenvalue.
Q.E.D.
We now prove the existence of the inverse wave operators VNVOi and VNVOTJ For (I,n) € T 1, we consider
the orthogonal decomposition of H;,
Hin =i, @ Mg,y Hiy ={¥ = "(fr.fo. f5. f) @ Fru € Hin s fo=Ff1, fa=+£f}. (113)

Each Hlin is stable under H and by corollary 6.1, for (I,n) € 1%7 k € N, the sets
Ept = E N Mgy = {HM; W= " (fi, Ffo, f5,£/3) © P € His fi, f3 €CE(R)} (114)

are respectively dense in Hl‘; and H,,,. For ¥, € ani we establish the existence of the strong limits (78) and
(79) defining WOi\IIO and WEW,. The following lemma guarantees the existence of asymptotic profiles for
Ugy. The details of its proof will be given after the proof of theorem 6.1.

Lemma 6.1. Given ¥y € 2% (I,n) € Iy, there exists

in ’
U, € [C (R H'(R,.)) NC' (Ry; LX(R,))]* @ Fin (115)
such that
OV = iHy¥y, (116)
and
s—lim ||e™" Wy — Wy (t)],, = 0. (117)
t — +00

Any solution of (116) in C(IR4; H) and in particuliar ¥; can be expressed in the form
Uy (t) = eHotf oty (118)

where
Ui eHy . ¥, €Hy. (119)

Thus, for a cut-off function x, satisfying (44), we have
lim || JoWi(t) — et = 0. (120)
t — +o0o
That is to say that for ¥y € £, (I,n) € Iy, €=+, —, there exists
Ui e HE NH;E, (121)
such that

lim || o'W — eMMw ||, = 0. (122)
t — +oo
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and of course, we can similarly prove the existence of
v, € Hy NHE, (123)
such that
lim || Joe'™" o — Mg, = 0. (124)
t — —00

From (121) to (124), we conclude that Wi ¥, is well-defined for ¥, € £2°

in>

(I,m) 61%7 €=+,—, and
WiEwo e My |[Wew| < 1ol (125)
0

Then, corollary 6.1 yields that the operator Wd" (resp. VVO_) is well-defined from H to Hg (resp. H; ) and
its norm is lower or equal to 1.

In order to prove the existence of W;, we need to compare in the neighbourhood of the future infinity
the outgoing part of ¥4 (t) with a solution of

(0 —1Hx) ¥ = 0. (126)
Lemma 6.2. The operator W§°
WEeWy = s—lim e Heot g* ctHoty, (127)
t — +oo

is well-defined from Hy to He and is independent of the choice of X0 satisfying (65). Of course W§° is
defined as well from HS‘ to Hoo and for ¥y € HS'

W, = 0.

Lemma 6.2, and (118), (119) yield the existence of

Ul € Hoo (128)
such that
lim || TLW(t) — e P="wL], =0 (129)
t — +o0
and therefore
lim || %W — e=tul |l =0 (130)
t — 400 =

which enables us to define Wjo on £2F (I,n) € I% and by density on H. The same thing can be done for

in >
WO_O. Let xoo and x., be two cut-off functions satisfying (65) and J and JZ the associated identifying

operators. Fort € R, Vg € H
He—iHootjo*oeth\IjO _ e—iHooth/zeth\I,OHHx < H(Xoo _ Xloo)eth\IIOHH7
and

lim Heiintj;oeth\IJo - efiH”tjé:eth\IloHH =0.
t — +oo
Thus, the operators ng are independent of the choice of x, and by a similar argument, Woi are independent
of the choice of y,.

We still have to prove that W+ and W= are bijective isometries, which yields that S is a bijective
isometry by construction. Let ¥ € ‘H and

vE=wie |, vi=wiv. (131)
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For y, satisfying (44) and x satisfying (65), we have

lim ||jo (eth\IJ — eiHotW§) H =0,
t — +o0 " (132)
lim Hjmj;oemt\IJ — jooeiHoct\I/foH =0,
£ oo H (133)

T JZ being simply the multiplication by Xoo. The local energy of e1'W¥ goes to 0 when ¢ goes to oo,

therefore ,
lim H(XO—&—XOO—l)elHt\IIHH:O.

f o too (134)
(132), (133) and (134) imply
; i i + iHooty£ || —
lim [ - T g, =0, (135)
t — Foo
which means B
WEWE = 1. (136)
If on the other hand we consider
U eHE , UL € Hoo (137)
and put
U =W (05,08, (138)
we have (135) from which we get
; * (i i + iHoot £ —
lim || (10 — Joe ot UF — Joet=tuL)||, =0 (139)
t — too0
; « (L iHt iHot g% iHoot\y£ —
lim [T (€ — Fye o — T, =0, (140)
t — too0

The local energy of e/0'WE and e?#=*TE goes to 0 when |t| goes to 400, therefore (139) and (140) yield

lim || J5 e — ||, =0 (141)
t — +oo0
and
lim || J5e™W — =], =0, (142)
t — £o0 -
thus
EE
WEWS =Ty gy - (143)

(136) and (143) show that W=+ and W= are all bijections and if we choose y, and Y. such that their
supports have no intersection, we deduce from (135)

11l = 125 |y + 119 . - (144)
Q.E.D.
Proof of lemma 6.1: Let Wy € £, (I,n) € I%, € = 4, —. There exists
o= "(f1,—ef1, f3,6f3) @ Fin € &7 (145)
such that
Uy =iH Y (146)
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and

Vo= "(g1,—€g1,93,€93) ® Fi € E (147)
such that
U = —iHYy. (148)
We denote ~ ' B ~
v :elHt\IJE) 5 \IJ:¢®Fln = t(¢177€¢1a¢37€¢3)®ﬂn (149)
and ~ ~
¥ =0, =iHWV. (150)
On the one hand, applying 0; + iH to equation
(0, —iH) ¥ =0,
we obtain ~
(0} —H*) ¥ =0
which, taking into account the fact that U takes its values in ‘H;,, can also be written
(7 — 02, + 07 +eB) 61 =0, (151)
(07 — 02, + B7 — <) da = 0. (152)
On the other hand
b1 lt=0=f1 5 @3 lt=0=f3 ; f1,[f3 €C°(R,,) (153)
and since ¥y = H?¥{
Ot limo= (=02 + B +eB) g1 , g1 €CF(R,.) (154)
O3 li—o= (=02 + B —B)) g5 , 93 € C(Ry,). (155)

The scattering results obtained in [3] together with proposition 6.2 imply that for any solution
feC(RuH'(R,))NC (Ry; L2 (R,))
of equation
(07 =02 + B +nB) f=0 . n=+-
with initial data
flimo=p1 5 0uf limo= (=02 + B7 + 1)) pe

such that
i=1,2 e L’Ry) ;5 (=02 + B +n8)) i € L*(R,),

there exists a solution
fieC(Ry; H' (Ry,)) NC' (Ry; L* (R,.,)) (156)

of
(2 —02) f=0 (157)

such that

tim — |[f(&) = il g m,.,) + 1967 @) = 0 f1 ()l L2(m, ., -

t — 400

U is the solution of (15) with initial data
v e [C5° (R)]* © F,

therefore in particular,
¢1,¢2 € C (Ri; H' (R,,)) NC* (Ry; L? (R,,))

and (151) to (155) yield the existence of

¥ € [C(Ry; H'(R,.)) NC" (Ry; L2(R,.))]" ® Fin
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such that ~
(08 —02.) ¥ —0

and
lim et — \illH =0 |, lim ‘ O, (eth\ilo — \ill> H =0
t — +o0 " t — 400 "
lim Hat (eth\ilo - \ifl) H ~0
t — +oo "
from which we deduce
lim  |eiftw, — atxile ~0. (158)
H
t — 400

¥, being an element of £2° C &}¢

1o, we can apply the previous construction to Wy. We find that there exists

U, € [C(Ri; H'(R,.)) NC" (Ry; L2(R,.,))]" ® Fin

solution of
(0 —07.) 01 =0

such that
lim  ||e™"Wo — Wy, =0 , lim ||, (e""Wo —W,)][,, =0, (159)
t — 400 t — 400
lim [0, ("W — Wy)][,, = 0. (160)
t — 400

From (159) and (160) we deduce
lim  ||(0, — iHo) (e""W¥g — Wy )|, = 0. (161)
t — +o0
ey being a solution of (15) in C (R¢; My ), we have
(0 —iH) ey = (8, — iHy — i3 M) 'y =0 (162)
and by (158)

lim
t — 400

iﬁlM (6th\I/0 - 8,5@1) H = 0.
H
o,V is identically zero in
{(t,r*,w); re| <|t|— R, we SQ},
which is not true in general for \ill, therefore
lim HiﬁlMat\qu —0
t — 400 "
and

lim  |[igiMe™ |, = 0. (163)
t — +o0
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(161), (162) and (163) give

lim /(0 — iHo) W1ll,, =0
t— +oo

and (0; — iHp) ¥1 being an element of C (R¢; H) and satisfying
(0 + iHp) [(0r —iHp) U1] =0

we must have
(0y —iHp) ¥y = 0.

Q.E.D.
Proof of lemma 6.2: Let
Uy € Hy NEY (Ln)EI% , E=4,— (164)
with
Supp(¥o) C [-R, R, x S5, , R>0. (165)
W, can be written
o = "(fo,—efo. fo,ef0) @ Frn ,  fo €C(Ry.) Suppfo C [-R, R] (166)
and .
e’LHOt\IJO =" (fv _Ef, fa Ef) & En ) f(t,?"*) = fO(T* - t) (167)
f is the solution of
(07 -92)f=0 (168)
associated with the initial data
fli=o=1fo  Of li=0= —0r. fo. (169)

Instead of applying Cook’s method to operators H., and Hy, which would give an apparently long-range
perturbation at infinity, we work on the second order scalar equations and establish the existence of g,
solution of

02 —0% +V,(r.)) g, =0
(0F = 07, + Vin( 1))77 ', 1 (170)
Valre) = xeo(ra) s ((48)° 40 +3)) =+
where xo is a cut-off function satisfying (65); the solution g, being such that
im0y = Dllgagy =0 lim 10n. (99— Pl = 0, (a7
t — 400 t — 400
I+ 3
lim H ) =0. (172)
t—4oo I 7 L2(R)
In the case where [ = 1/2 and n = —, equations (168) and (170) are the same and it suffices to take g_ = f.
Let us now assume )
1 1
(l+2) +n(l+2> > 0. (173)

We write equations (168) and (170) in their hamiltonian form

d(d) (% ) a )
d(8) e D)(8) ()
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The operator iAg is skew-adjoint with dense domain on
Hy = BL'Y(R,.,) x L*(R,.,) (176)

completion of [C§°(RR,., )] for the norm

Ity = [ {105+ 18} ar. (1)
and 74, is skew-adjoint with dense domain (cf. [3]) on
H=H xL*(R,,) (178)
completion of [C§°(RRy. )] for the norm
I gl = [ {0+ loaf + Valan (179

Under assumption (173), the norm (179) is equivalent to

(4 5) X +§> X< (180)

|||t(91,92)|||2:|| t(glygz)H;OJr g1

L2 (R,,)

Moreover, any solution *(g,d;g9) € C (Ry;H) of (170) satisfies the following energy estimate: for rl < r2
andt e R

/1< e {Iéhg(lﬁ)l2 + 10k (8)] + Vn(r*)|g(t)|2} dr, (181)

</ {10,900 + 109 () + Vi (r)lg(O)* } dr.
L=t <re<ri+t]
which is very easily obtained by multiplying (170) by d;g and integrating by parts on the domain
Dyp1 g2 = {(7’, r); TE(0,), rt—|t—7| <1, <ri4|t— T|} (182)
fo being in C§°(R,.,), we can consider that
e [ (fo,~0r. fo)] € C (Ry; H)

and we apply Cook’s method to prove the existence in H of the limit

( gon ) = s—lim eAnte Aot ( _8f0f > (183)
91y t — 400 T J 0
We shall denote

do="(fo,=0r. fo) , Poo= "(goy>91n)- (184)

We have

Hat (GA"te_Aotﬂso)HH = H(An — Ao) €_A0t¢0||H = [[Vy(ra) folre — t)||L2(Rr*) < ||fUHL2(RT*) HVnHLoc(T*»_R)

and for r, large enough
V,(r.)=0Cr;% , C>0, (185)

thus

H(?t (eA"te_AOt(zﬁo) Ot™2) ; t— o0,

||H =

and
|0 (et e o) ||y € L' (t > 0).

The limit (183)is therefore well-defined and if g, is the solution of (170) such that

() =0 "
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then

tim || " gy 0egn) — (£, 0ef)|| gy = O- (187)
t — 400

This last limit together with the equivalence of norms (179) and (180) gives (171) and (172). Moreover, for
re <t—R
gn(t,m) =0 and 0ygy(t,r.) =0. (188)

Indeed, for t € R, € > 0 we choose 7 € R such that
H(boo — eiA"Te_iAOT(bOHH <e, T>t (189)
For '(f1, f2) € H, we denote
C("(f1 ) = [0r Hil” + Vol P + | ol (190)

Let us consider

/ L (e Mg dr. < / L[em" (g0 — e MTe T 0T g )] dr,
r«<t—R

r.<t—R

+/ L (efiA"(th)e*iAOTgbo) dr,.
re<t—R

(181) and (189) yield

/ L (e_iA”thoo) dr, < &2+ / L (e_iAOT(ﬁO) dr,
r«<t—R

r«<T—R
and this last integral is zero since
Supp (e_i’A“T%) C[r—R,7+R].

(188) is therefore satisfied and for ¢ large enough g, is a solution of

1 1\? 1
8363*+T2<<l+2) +n<l+2)>]gn0. (191)

\i'oo(t) = ¢ (g-c(t), —eg—c(t), ge(t),€g9:(t)) @ Fip. (192)
There exists tg > 0 such that, for ¢ > ¢y, g. and g_. satisfy

1 1\° 1
[83—83*+r2<<l+2> +e<l+2)>]ge—0, (193)

Let us now introduce

-0+~ ((1+2 o 1+ 1 =0 (194)
= 2) "\ 9) )| 9=
with
9er9—c € C([to, +oo[; Hy) , 9yge,eg—c € C ([to, +oof; L*(R,.,)) - (195)
Moreover, for t > tg
Supp (ge(t), g—e(t), 0¢gc (1), Org—c(t)) C [t — R, 400 C [0,+00]. (196)

Thus, the quantities
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belong to C ([to, +oo[; H) and (171), (172) yield

lim ‘
t — 400

) (\Ifoo(t) - eiHOt\IJO) H -0 lim ’
H
t — 400

o,. (\i/oc(t) - eiHOt\IIO) HH —0,

. } —1 T _ iHot _
lim H(l+2>r* (\I/oo(t) e \IJO) —0.

t — 400 H

In particular, we have
1 ~ .
lim H <8t + Lo, —i (l + 2) r*lM) (\I/oo(t) - elHotxpo) H =0.
t — +o0 H

Since efot¥ is a solution of _
(0 + LO,,) ety = 0,

we have

1 ) 1 .
"(at+L8T* —1 (l+2> ’[”*_1M> eZHot\IIOH — <l+2) ||,r*—1€ZH0t‘I]OHH :O(t—l) t — 400
H

and therefore
1 -
lim H (at + LO,, —i (l + 2) r;lM) \Iloo(t)H =0.
t— 400 H

We introduce B
l:[/oo = \Ijoo |{r*20} .

The quantities
1
OV , Or VYoo , (l+2) o

belong to C ([to, +ool; HEM™) where, for (I,n) € Z, ande = +,—
Hién = { ¢ (f775f7gaeg) ®En € HOO} .
From (200), we get

=0
Hoo

lim H (at + LO,, —i (z + 1) r*1M> \yoo(t)‘

t — 400 2

and, the function

2

<at — Lo, +1i <l+ ;) r*lM) [(@ + Lo, —1i (l+ ;) r*lM) ‘Poo} =0.

Therefore, we must have for t > tg

1
(at + Lo, —i (l + ) r:lM) Voo € C ([to, +oo[; HEY")

satisfies

1
(at + LO,, —i (l + 2) r;lM) Uo(t) =0 in Heo.

H; being a distribution space, we can write in the sense of distributions for ¢t > ¢g

(197)

(198)

(199)

(200)

(201)

(202)

(203)

(204)

Oy (8t + L., —1i (l + ;) r;1M> Uo(t) = <8t + Lo, —1 (l + ;) r;lM) I¥oo(t) =0  in Heo,
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which implies that 9, ¥ is a solution in C ([to, +-0o[; HES") of
(0 —iHo) ¥ =0.
This solution can be extended to C (R¢; HEM™) and we denote
U0 = e H=l0g U (1) (205)

its initial data at ¢ = 0. From (196), (197), we get

lim  ||e="W0 — T2, (e W) |, =0. (206)
t — +oo ~

The value of 9 (¢"0'W) at t = 0 is iHoWo. H is a self-adjoint operator with dense domain on H, its point
spectrum is empty and the spaces 'Hoi, Hi are invariant under Hy. Therefore the direct sum of the sets

{HoWo; WoeHy NER} s (n) €Ty, e=+,— (207)

is dense in H; . (206) shows that for an initial data Hy¥ in a set of type (207), the limit

VO = s—lim e =t gx tHol 1,0, (208)
t — 400

exists in Ho. The operator Wi is consequently well-defined from Hy into Hs.. Since the local energy of
the solution e 0! HyW goes to zero when [t| goes to +o0, the limit ¥ is independent of the choice of yuo
satisfying (65).

Q.E.D.

7 Conclusion

The scattering theory developed in this paper is only valid for the linear massless Dirac system. In the
case of a massive field and when space-time is asymptotically flat, the mass of the field induces long-range
perturbations at infinity and classical wave operators will probably not exist. However, using the methods
developed by J. Dollard and G. Velo [10] and by V. Enss and B. Thaller [11] about the relativistic Coulomb
scattering of Dirac fields as well as the works of A. Bachelot [1] and J. Dimock and B. Kay [9] on the Klein-
Gordon equation on the Schwarzschild metric, it must be possible to show the existence and asymptotic
completeness of Dollard-modified wave operators at infinity.
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