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Scattering of linear Dirac fields
by a spherically symmetric Black-Hole

by J.-P. Nicolas

Mathematical Institute
24-29 St Giles’

OXFORD OX1 3LB
ENGLAND

or
CeReMaB
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Abstract - We study the linear Dirac system outside a spherical Black-Hole. In the case of massless
fields, we prove the existence and asymptotic completeness of classical wave operators at the horizon of the
Black-Hole and at infinity.

Résumé - On étudie le système linéaire de Dirac à l’extérieur d’un Trou Noir sphérique. Dans le cas des
champs sans masse, on montre l’existence et la complétude asymptotique des opérateurs d’onde classiques à
l’horizon du Trou Noir et à l’infini.

1 Introduction

We develop a time-dependent scattering theory for the linear Dirac system on Schwarzschild-type metrics.
The first time-dependent scattering results on the Schwarzschild metric were obtained by J. Dimock [8].
Using the short range at infinity of the interaction between gravity and a massless scalar field, he proved the
existence and asymptotic completeness of classical wave-operators for the wave equation. The case of the
Maxwell system in which the interaction is pseudo long-range has been worked out by A. Bachelot [2], and
for the Regge-Wheeler equation, a complete scattering theory has been developed by A. Bachelot and A.
Motet-Bachelot [3]. Our purpose in this work is to study the classical wave operators and their asymptotic
completeness for the linear massless Dirac system on a general ”Schwarzschild-type” metric which covers all
the usual cases of spherical black-holes. The main tools are Cook’s method for the existence and the results
obtained in [3] for the asymptotic completeness.

Let us consider the manifold IRt×]0,+∞[r×S2
θ,φ endowed with the pseudo-riemannian metric

gµνdx
µdxν = F (r)e2δ(r)dt2 − [F (r)−1dr2 + r2dθ2 + r2sin2θdφ2] (1)

where F, δ ∈ C∞(]0,+∞[r). We assume the existence of three values rν of r, 0 ≤ r− < r0 < r+ ≤ +∞,
which are the only possible zeros of F , such that

F (rν) = 0 , F ′(rν) = 2κν , κν 6= 0 , if 0 < rν < +∞,

F (r) > 0 for r ∈]r0, r+[ , F (r) < 0 for r ∈]r−, r0[.

When they are finite and non zero, r−, r0 and r+ are the radii of the spheres called: horizon of the black-hole
(r0), Cauchy horizon (r−) and cosmological horizon (r+). κν is the surface gravity at the horizon {r = rν}.
If r+ is infinite, we assume moreover that

F (r) = 1− r1
r +O

(
r−2
)
, r1 > 0 , δ(r) = δ(+∞) + o(r−1) , r → +∞,

F ′(r) , δ′(r) = O(r−2) , r → +∞.
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All these properties are satisfied by usual spherical black-holes (see [13]).
Notations: Let (M, g) be a Riemannian manifold, C∞0 (M) denotes the set of C∞functions with compact

support in M , Hk(M, g), k ∈ IN is the Sobolev space, completion of C∞0 (M) for the norm

‖f‖2Hk(M) =
k∑

j=0

∫
M

〈
∇jf,∇jf

〉
dµ,

where ∇j , dµ and <,> are respectively the covariant derivatives, the measure of volume and the hermitian
product associated with the metric g. We write L2(M, g) = H0(M, g).

If E is a distribution space on M , Ecomp represents the subspace of elements of E with compact support
in M .

The 2-dimensional euclidian sphere S2
ω is endowed with its usual metric

dω2 = dθ2 + sin2θdϕ2 , 0 ≤ θ ≤ π , 0 ≤ ϕ < 2π.

2 The covariant generalization of the linear Dirac sys-

tem on Schwarzschild-type metrics

The covariant generalization of the Dirac system on the metric g has the form

(iγµ∇µ −m) Φ = 0 , m ≥ 0 (2)

for a particle with mass m, where Φ is a Dirac 4-spinor, the γµ are the contravariant Dirac matrices on
curved space-time and ∇µ is the covariant derivation of spinor fields. We make the following choices of flat
space-time Dirac matrices

γ0̃ =
(
σ0 0
0 −σ0

)
γα̃ =

(
0 σα

−σα 0

)
α = 1, 2, 3 (3)

where

σ0 =
(

1 0
0 1

)
σ1 = −

(
0 1
1 0

)
σ2 = −

(
0 −i
i 0

)
σ3 = −

(
1 0
0 −1

)
(4)

are the Pauli matrices, and of local Lorentz frame

eα̃
µ =

{
|gµµ|

1
2 if α̃ = µ,

0 if α̃ 6= µ.
(5)

We recall that flat space time Dirac matrices are a set of 4x4 matrices {γα̃}0≤α̃≤3 such that{
γα̃, γβ̃

}
= γα̃γβ̃ + γβ̃γα̃ = 2ηα̃β̃1I (α̃, β̃ = 0, 1, 2, 3) (6)

where
ηα̃β̃ = diag(1,−1,−1,−1) (7)

is the Minkowski metric. The indices with a tilde refer to flat space-time and can be raised or lowered using
ηα̃β̃ , whereas the indices without tilde refer to curved space-time and are raised or lowered using the metric
g.

With these definitions, the γµ and ∇µ are then defined by (see for example [5], [7])

γµ = γα̃e
α̃µ (8)

and
∇µ = ∂µ +

1
2
G[α̃β̃]ω

α̃β̃
µ (9)

where
G[α̃,β̃] =

1
4

[
γα̃, γβ̃

]
≡ 1

4

(
γα̃γβ̃ − γβ̃γα̃

)
(10)
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are the generators of the spinor representation of the proper Lorentz group and

ωα̃β̃
µ =

1
2
eα̃ν

(
eβ̃

ν,µ − eβ̃
µ,ν

)
− 1

2
eβ̃ν

(
eα̃

ν,µ − eα̃
µ,ν

)
+

1
2
eα̃νeβ̃σ

(
eγ̃

ν,σ − eγ̃
σ,ν

)
eγ̃µ = −ωβ̃α̃

µ (11)

are the coefficients of the spin connection, ,µ standing for the derivation with respect to the µ-th variable.
We compute the a priori non zero components:

ωt̃r̃
t =

1
2
et̃t
[
∂t

(
er̃

t

)
− ∂t

(
er̃

t

)]
− 1

2
er̃r
[
∂t

(
et̃

r

)
− ∂r

(
et̃

t

)]
+

1
2
et̃ter̃r

[
∂r

(
et̃

t

)
− ∂t

(
et̃

r

)]
et̃t

=
1
2
er̃r∂r

(
et̃

t

)(
1 + et̃tet̃t

)
=

1
2
(−F 1/2)∂r(F 1/2eδ)(1 + F−1/2e−δF 1/2eδ) = −

(
F ′

2
+ Fδ′

)
eδ,

ωt̃r̃
r =

1
2
et̃t
[
∂r

(
er̃

t

)
− ∂t

(
er̃

r

)]
− 1

2
er̃r
[
∂r

(
et̃

r

)
− ∂r

(
et̃

r

)]
+

1
2
et̃ter̃r

[
∂r

(
er̃

t

)
− ∂t

(
er̃

r

)]
er̃r = 0,

ωt̃θ̃
t =

1
2
et̃t
[
∂t

(
eθ̃

t

)
− ∂t

(
eθ̃

t

)]
− 1

2
eθ̃θ
[
∂t

(
et̃

θ

)
− ∂θ

(
et̃

t

)]
+

1
2
et̃teθ̃θ

[
∂θ

(
et̃

t

)
− ∂t

(
et̃

θ

)]
et̃t = 0,

ωt̃θ̃
θ =

1
2
et̃t
[
∂θ

(
eθ̃

t

)
− ∂t

(
eθ̃

θ

)]
− 1

2
eθ̃θ
[
∂θ

(
et̃

θ

)
− ∂θ

(
et̃

θ

)]
+

1
2
et̃teθ̃θ

[
∂θ

(
eθ̃

t

)
− ∂t

(
eθ̃

θ

)]
eθ̃θ = 0,

ωt̃ϕ̃
t =

1
2
et̃t
[
∂t

(
eϕ̃

t

)
− ∂t

(
eϕ̃

t

)]
− 1

2
eϕ̃ϕ

[
∂t

(
et̃

ϕ

)
− ∂ϕ

(
et̃

t

)]
+

1
2
et̃teϕ̃ϕ

[
∂ϕ

(
et̃

t

)
− ∂t

(
et̃

ϕ

)]
et̃t = 0,

ωt̃ϕ̃
ϕ =

1
2
et̃t
[
∂ϕ

(
eϕ̃

t

)
− ∂t

(
eϕ̃

ϕ

)]
− 1

2
eϕ̃ϕ

[
∂ϕ

(
et̃

ϕ

)
− ∂ϕ

(
et̃

ϕ

)]
+

1
2
et̃teϕ̃ϕ

[
∂ϕ

(
eϕ̃

t

)
− ∂t

(
eϕ̃

ϕ

)]
eϕ̃ϕ = 0,

ωr̃θ̃
r =

1
2
er̃r
[
∂r

(
eθ̃

r

)
− ∂r

(
eθ̃

r

)]
− 1

2
eθ̃θ
[
∂r

(
er̃

θ

)
− ∂θ

(
er̃

r

)]
+

1
2
er̃reθ̃θ

[
∂θ

(
er̃

r

)
− ∂r

(
er̃

θ

)]
er̃r = 0,

ωr̃θ̃
θ =

1
2
er̃r
[
∂θ

(
eθ̃

r

)
− ∂r

(
eθ̃

θ

)]
− 1

2
eθ̃θ
[
∂θ

(
er̃

θ

)
− ∂θ

(
er̃

θ

)]
+

1
2
er̃reθ̃θ

[
∂θ

(
eθ̃

r

)
− ∂r

(
eθ̃

θ

)]
eθ̃θ = F 1/2,

ωr̃ϕ̃
r =

1
2
er̃r
[
∂r

(
eϕ̃

r

)
− ∂r

(
eϕ̃

r

)]
− 1

2
eϕ̃ϕ

[
∂r

(
er̃

ϕ

)
− ∂ϕ

(
er̃

r

)]
+

1
2
er̃reϕ̃ϕ

[
∂ϕ

(
er̃

r

)
− ∂r

(
er̃

ϕ

)]
er̃r = 0,

ωr̃ϕ̃
ϕ =

1
2
er̃r
[
∂ϕ

(
eϕ̃

r

)
− ∂r

(
eϕ̃

ϕ

)]
− 1

2
eϕ̃ϕ

[
∂ϕ

(
er̃

ϕ

)
− ∂ϕ

(
er̃

ϕ

)]
+

1
2
er̃reϕ̃ϕ

[
∂ϕ

(
eϕ̃

r

)
− ∂r

(
eϕ̃

ϕ

)]
eϕ̃ϕ

= F 1/2sinθ,

ωθ̃ϕ̃
θ =

1
2
eθ̃θ
[
∂θ

(
eϕ̃

θ

)
− ∂θ

(
eϕ̃

θ

)]
− 1

2
eϕ̃ϕ

[
∂θ

(
eθ̃

ϕ

)
− ∂ϕ

(
eθ̃

θ

)]
+

1
2
eθ̃θeϕ̃ϕ

[
∂ϕ

(
eθ̃

θ

)
− ∂θ

(
eθ̃

ϕ

)]
eθ̃θ = 0,

ωθ̃ϕ̃
ϕ =

1
2
eθ̃θ
[
∂ϕ

(
eϕ̃

θ

)
− ∂θ

(
eϕ̃

ϕ

)]
− 1

2
eϕ̃ϕ

[
∂ϕ

(
eθ̃

ϕ

)
− ∂ϕ

(
eθ̃

ϕ

)]
+

1
2
eθ̃θeϕ̃ϕ

[
∂ϕ

(
eϕ̃

θ

)
− ∂θ

(
eϕ̃

ϕ

)]
eϕ̃ϕ

= cosθ.

and we obtain the following expression for the linear massive Dirac equation outside a spherical black-hole:{
γ0̃∂t + Feδγ1̃

(
∂r +

1
r

+
F ′

4F
+
δ′

2

)
+
F 1/2eδ

r
γ2̃

(
∂θ +

1
2
cotgθ

)
+

F 1/2eδ

rsinθ
γ3̃∂ϕ + iF 1/2eδm

}
Φ = 0. (12)

We introduce the frame with respect to which we shall express the equation, R′ =
(

1
rsinθ∂ϕ,− 1

r∂θ, F
1/2∂r

)
,

image of R =
(
F 1/2∂r,

1
r∂θ,

1
rsinθ∂ϕ

)
by the spatial rotation f with Euler angles (see for example [15])

(ϕ, θ, ψ) = (0, π/2, π), and the Regge-Wheeler variable r∗ defined by

dr

dr∗
= Feδ r ∈]r0, r+[. (13)

The spinor
Ψ = T(f−1)rF

1/4eδ/2Φ, (14)

3



where T(f−1) is the spin transformation associated with the rotation f−1, satisfies

∂tΨ = iHΨ , H = i

[
γ0̃γ3̃∂r∗ −

F 1/2eδ

r
γ0̃γ2̃

(
∂θ +

1
2
cotgθ

)
+
F 1/2eδ

rsinθ
γ0̃γ1̃∂ϕ + iγ0̃F 1/2eδm

]
(15)

on the domain IRt × IRr∗ × S2
ω representing the exterior of the black-hole in the variables (t, r∗, ω).

We recall (see [7]) that, given a spatial rotation f of angle θ around a unit vector n = (n1, n2, n3), its
associated spin transformation Tf is

Tf = Exp
{[
n1G[2̃,3̃] + n2G[3̃,1̃] + n3G[1̃,2̃]

]
θ
}

(16)

where Exp is the exponential mapping.

3 Global Cauchy problem

We introduce the Hilbert space
H =

{
L2
(
IRr∗ × S2

ω; dr2∗ + dω2
)}4

. (17)

Theorem 3.1. Given Ψ0 ∈ H, equation (15) has a unique solution Ψ such that

Ψ ∈ C (IRt;H) , Ψ |t=0= Ψ0. (18)

Moreover, for any t ∈ IR
‖Ψ(t)‖H = ‖Ψ0‖H . (19)

Proof: We show that the operator
H̃ = H + γ0̃F 1/2eδm (20)

is self-adjoint with dense domain on H. We decompose H using generalized spherical functions of weights
1/2 and −1/2. Let

I = {(l,m, n) ; 2l, 2m, 2n ∈ ZZ ; l − |m|, l − |n| ∈ IN} (21)

and for any half-integer m
Im = {(l, n) ; (l,m, n) ∈ I} . (22)

For (l,m, n) ∈ I, we define the function T l
mn of (ϕ1, θ, ϕ2), ϕ1, ϕ2 ∈ [0, 2π[, θ ∈ [0, π], by

T l
mn(ϕ1, θ, ϕ2) = e−imϕ2ul

mn(θ)e−inϕ1 (23)

where ul
mn satisfies the following ordinary differential equations

d2ul
mn

dθ2
+ cotgθ

dul
mn

dθ
+
[
l(l + 1)− n2 − 2mncosθ +m2

sin2θ

]
ul

mn = 0, (24)

dul
mn

dθ
− n−mcosθ

sinθ
ul

mn = −i [(l +m)(l −m+ 1)]1/2
ul

m−1,n, (25)

dul
mn

dθ
+
n−mcosθ

sinθ
ul

mn = −i [(l +m+ 1)(l −m)]1/2
ul

m+1,n (26)

and the normalization condition ∫ π

0

∣∣ul
mn(θ)

∣∣2 sinθdθ =
1

4π2
. (27)

We know from [12], that
{
T l

mn

}
(l,m,n)∈I 1

2

is a Hilbert basis of

L2
(
[0, 2π[ϕ1×[0, π]θ × [0, 2π[ϕ2 ; sin

2θdϕ2
1 + dθ2 + dϕ2

2

)
. (28)

Thus, for any half-integer m, {
T l

mn(ϕ, θ, 0) = e−inϕul
mn(θ)

}
(l,n)∈Im
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is a Hilbert basis of L2(S2
ω; dω2). In particular,

H = ⊕ Hln
(l,n)∈I 1

2
(29)

where
Hln =

{
t
(
f1T

l
− 1

2 ,n, f2T
l
1
2 ,n, f3T

l
− 1

2 ,n, f4T
l
1
2 ,n

)
; fi ∈ L2(IRr∗ ; dr

2
∗) , i = 1, 2, 3, 4

}
, (30)

or equivalently,

Hln =
[
L2(IRr∗ ; dr

2
∗)
]4 ⊗ Fln ; Fln = t

(
T l
− 1

2 ,n, T
l
1
2 ,n, T

l
− 1

2 ,n, T
l
1
2 ,n

)
(31)

where the T l
± 1

2 ,n
are seen as functions of only ϕ, θ. Let

Ψ = t (f1, f2, f3, f4)⊗ Fln ∈ Hln.

Denoting α = F 1/2eδ, the four components of H̃Ψ are

i∂r∗f3T
l
− 1

2 ,n −
α

r
f4

(
∂θ +

1
2
cotgθ

)
T l

1
2 ,n + i

α

rsinθ
f4∂ϕT

l
1
2 ,n,

−i∂r∗f4T
l
1
2 ,n +

α

r
f3

(
∂θ +

1
2
cotgθ

)
T l
− 1

2 ,n + i
α

rsinθ
f3∂ϕT

l
− 1

2 ,n,

i∂r∗f1T
l
− 1

2 ,n −
α

r
f2

(
∂θ +

1
2
cotgθ

)
T l

1
2 ,n + i

α

rsinθ
f2∂ϕT

l
1
2 ,n,

−i∂r∗f2T
l
1
2 ,n +

α

r
f1

(
∂θ +

1
2
cotgθ

)
T l
− 1

2 ,n + i
α

rsinθ
f1∂ϕT

l
− 1

2 ,n.

Relations (25) and (26) yield(
∂θ +

1
2
cotgθ

)
T l

1
2 ,n =

n

sinθ
T l

1
2 ,n − i

(
l +

1
2

)
T l
− 1

2 ,n, (32)

(
∂θ +

1
2
cotgθ

)
T l
− 1

2 ,n =
−n
sinθ

T l
− 1

2 ,n − i

(
l +

1
2

)
T l

1
2 ,n (33)

and we also have
∂ϕT

l
± 1

2 ,n(ϕ, θ, 0) = −inT l
± 1

2 ,n(ϕ, θ, 0). (34)

Thus, the four components of H̃Ψ are(
i∂r∗f3 + iα

r

(
l + 1

2

)
f4
)
T l
− 1

2 ,n
,(

−i∂r∗f4 − iα
r

(
l + 1

2

)
f3
)
T l

1
2 ,n
,(

i∂r∗f1 + iα
r

(
l + 1

2

)
f2
)
T l
− 1

2 ,n
,(

−i∂r∗f2 − iα
r

(
l + 1

2

)
f1
)
T l

1
2 ,n
.

We see that on Hln, H̃ has the form

H̃ |Hln
=
(
i∂r∗L+

α

r

(
l +

1
2

)
M

)
r∗

⊗ 1Iθ,ϕ (35)

where the matrices L et M , defined by

L =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 M =


0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

 (36)
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are hermitian and L is invertible. Since the function αr−1 belongs to L∞(IRr∗), H̃ |Hln
is self-adjoint with

domain
Dln = [D(i∂r∗)]

4 ⊗ Fln '
[
H1(IRr∗ ; dr

2
∗)
]4 ⊗ Fln (37)

dense in Hln. On Dln, we choose the following norm

Ψ = t (f1, f2, f3, f4)⊗ Fln ∈ Dln , ‖Ψ‖2Dln
= ‖Ψ‖2(L2(IR))4 +

∥∥∥∥(i∂r∗L+
α

r

(
l +

1
2

)
M

)
Ψ
∥∥∥∥2

(L2(IR))4
(38)

and we introduce the dense subspace of H

D(H) =

Ψ =
∑

(l,n)∈I 1
2

Ψln ; Ψln ∈ Dln ,
∑

(l,n)∈I 1
2

‖Ψln‖2Dln
< +∞

 . (39)

H̃ is self-adjoint onH with domain D(H), γ0̃αm is self-adjoint and bounded onH, therefore, H is self-adjoint
on H with dense domain D(H). Theorem 3.1 follows from Stone’s theorem.

Q.E.D.

4 Wave operators at the horizon

When r → r0, the operator H has the formal limit

H0 = iγ0̃γ3̃∂r∗ (40)

which is a self-adjoint operator on H with dense domain

D(H0) =
{
H1
[(

IRr∗ ; dr
2
∗
)
;L2

(
S2

ω; dω2
)]}4

. (41)

The spectrum of H0 is purely absolutely continuous. We define the subspaces of incoming and outgoing
waves associated with H0:

H±0 =
{
Ψ = t

(
u1, u2, u3, u4

)
, u3 = ∓u1 , u4 = ±u2

}
. (42)

H±0 as well as the Hln remain stable under H0 and we have

H = H+
0 ⊕H

−
0 , ∀Ψ0 ∈ H±0 ,

(
eiH0tΨ0

)
(r∗, ω) = Ψ0 (r∗ ± t, ω) . (43)

Since we want to compare H with H0 in the neighbourhood of the horizon, we introduce the cut-off function

χo ∈ C∞(IRr∗) , 0 ≤ χo ≤ 1,
∃a, b ∈ IR , a < b such that (44)

for r∗ < a χo(r∗) = 1 ; for r∗ > b χo(r∗) = 0

together with the identifying operator

J0 :
H −→ H
Ψ 7−→ χ0Ψ.

(45)

We consider the classical wave operators

W±
0 Ψ0 = s− lim e−iHtJ0e

iH0tΨ0 in H.
t→ ±∞ (46)

Theorem 4.1. The operator W+
0 (resp. W−

0 ) is well-defined from H+
0 (resp. H−0 ) to H, is independent of

the choice of χo satisfying (44), moreover

∀Ψ0 ∈ H±0 ,
∥∥W±

0 Ψ0

∥∥
H = ‖Ψ0‖H . (47)
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Proof: We apply Cook’s method. J0 being a bounded operator, it suffices to prove that for

Ψ0 ∈ D±ln ; D±ln = H±0 ∩Hln ∩
[
C∞0

(
IRr∗ × S2

ω

)]4
, (l, n) ∈ I 1

2
(48)

we have ∥∥(HI0 − I0H0) eiH0tΨ0

∥∥
H ∈ L

1 (±t > 0) . (49)

Let for (l, n) ∈ I 1
2

Ψ0 ∈ D+
ln , SuppΨ0 ⊂ [−R,R]r∗ × S2

ω , R > 0, (50)

then

HeiH0tΨ0 =
(
i∂r∗ +

α

r

(
l +

1
2

)
M − αmγ0̃

)
Ψ0(r∗ + t),

and
H0e

iH0tΨ0 = i∂r∗LΨ0(r∗ + t).

Ψ0 being compactly supported, for t large enough,

∥∥(HI0 − I0H0) eiH0tΨ0

∥∥
H =

∥∥∥∥(αr
(
l +

1
2

)
M − αmγ0̃

)
eiH0tΨ0

∥∥∥∥
H

≤
∥∥∥∥(l + 1

2

)
α

r
+ αm

∥∥∥∥
L∞(−R−t,R−t)

‖Ψ0‖H.

α is rapidly decreasing in r∗ when r → r0, therefore∥∥(HI0 − I0H0) eiH0tΨ0

∥∥
H ∈ L

1 (t > 0)

and W+
0 is well-defined. The same proof can of course be applied to W−

0 . Furthermore, if Ψ0 ∈ H±0 , we
get from (43) that the energy of eiH0tΨ0 in a domain of IRr∗ × S2

ω bounded to the left in r∗ vanishes when
t tends to infinity, which gives (47). If now we consider two different cut-off functions χo and χ′o, and the
associated identifying operators J0 and J ′0, the difference χo − χ′o is compactly supported, thus∥∥e−iHtJ0e

iH0tΨ0 − e−iHtJ ′0eiH0tΨ0

∥∥
H → 0 , t→ ±∞.

Q.E.D.

Remark 4.1. In the case where r+ is finite, we construct in the same way classical wave operators at the
cosmological horizon

W±
1 Ψ0 = s− lim e−iHtJ1e

iH0tΨ0 in H
t→ ±∞ (51)

where the identifying operator J1 is defined by

J1 :
H −→ H
Ψ 7−→ χ1Ψ,

(52)

χ1 being a cut-off function

χ1 ∈ C∞ (IRr∗) , 0 ≤ χ1 ≤ 1,
∃a, b ∈ IR , a < b such that (53)

for r∗ < a χ1(r∗) = 0 ; for r∗ > b χ1(r∗) = 1.

W+
1 (resp. W−

1 ) is an isometry from H−0 ( resp. H+
0 ) to H and is independent of the choice of χ1 satisfying

(53).
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5 Wave operators at infinity (massless case)

In all this paragraph, we shall assume that r+ = +∞; the metric (1) is then asymptotically flat in the
neighbourhood of infinity and we choose to compare H to an operator H∞ which is equivalent to the
hamiltonian operator for the Dirac equation on the Minkowski space-time. We also make the hypothesis
that m = 0 in order to avoid long range perturbations at infinity. Let us consider on the Minkowski metric

ds2M = dt2 − dx2 − dy2 − dz2 ; x, y, z ∈ IR (54)

the massless Dirac system {
γ0̃∂t + γ1̃∂x + γ2̃∂y + γ3̃∂z

}
Φ = 0. (55)

The associated hamiltonian operator, defined by

HM = iγ0̃
{
γ1̃∂x + γ2̃∂y + γ3̃∂z

}
, (56)

is self-adjoint with dense domain on
[
L2 (IRx × IRy × IRz)

]4 and if Φ ∈ C
(
IRt;

[
L2 (IRx × IRy × IRz)

]4) is a
solution of (55), its energy in a compact domain goes to zero when t goes to ±∞. In addition, for any
Φ0 ∈

[
L2 (IRx × IRy × IRz)

]4 with a compact support contained in

B(0, R) =
{

(x, y, z); 0 ≤ ρ < R , ρ =
(
x2 + y2 + z2

)1/2
}
, (57)

the solution Φ of (55) associated with the initial data Φ0 satisfies

Φ(t, x, y, z) = 0 for 0 ≤ ρ ≤ |t| −R. (58)

At the point of spherical coordinates (ρ, θ, ϕ), we apply the spatial rotation f with Euler angles (π/2, θ, π−ϕ).
The local frame (∂x, ∂y, ∂z) is thus transformed by f−1 into

(∂x1 , ∂x2 , ∂x3) =
(

1
ρsinθ

∂ϕ,
−1
ρ
∂θ, ∂ρ

)
. (59)

The spinor
Ψ = ρTfΦ, (60)

where Tf is the spin transformation associated with f defined in (16), satisfies

∂tΨ = iH∞Ψ , H∞ = i

[
γ0̃γ3̃∂ρ −

1
ρ
γ0̃γ2̃

(
∂θ +

1
2
cotgθ

)
+

1
ρsinθ

γ0̃γ1̃∂ϕ

]
. (61)

The operator H∞ on

H∞ =
{
L2
(
[0,+∞[ρ × S2

ω ; dρ2 + dω2
)}4

(62)

is unitarily equivalent to HM on{
L2
(
IRx × IRy × IRz ; dx2 + dy2 + dz2

)}4
.

Therefore, H∞ is self-adjoint with dense domain on H∞ and if Ψ ∈ C (IRt,H∞) satisfies (61), then its energy
in a compact domain goes to zero when t goes to ±∞. Moreover, for

Ψ0 ∈ H∞ ; Supp(Ψ0) ⊂ B(0, R)

Ψ(t) = eiH∞tΨ0 satisfies
Ψ(t, ρ, θ, ϕ) = 0 for 0 ≤ ρ ≤ |t| −R. (63)

In order to avoid artificial long-range interactions, we choose

ρ = r∗ ≥ 0 (64)
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and we introduce the cut-off function

χ∞ ∈ C∞ ([0,+∞[r∗) , 0 ≤ χ∞ ≤ 1,
∃ 0 < a < b < +∞ such that (65)

for 0 ≤ r∗ ≤ a χ∞(r∗) = 0 , for r∗ ≥ b χ∞(r∗) = 1

together with the identifying operator

J∞ : H∞ −→ H ; for Ψ ∈ H∞

 (JΨ) |{r∗≥0}= χ∞Ψ,

(JΨ) |{r∗≤0}= 0.
(66)

We define the classical wave operators

W±
∞Ψ0 = s− lim e−iHtJ∞eiH∞tΨ0 in H.

t→ ±∞ (67)

Theorem 5.1. The operators W±
∞ are well-defined from H∞ to H, are independent of the choice of χ∞ and

∀Ψ0 ∈ H∞ ,
∥∥W±

∞Ψ0

∥∥
H = ‖Ψ0‖H∞ . (68)

Proof: For (l, n) ∈ I 1
2
, we introduce the subspaces of H∞

D∞ln =
{
Ψ = t (f1, f2, f3, f4)⊗ Fln ∈ H∞; 1 ≤ i ≤ 4 fi ∈ C∞0

(
IR+

r∗

)}
(69)

the direct sum of which is dense in H∞. For Ψ0 ∈ D∞ln ,

H∞ |D∞ln=
(
i∂r∗L+

1
r∗

(
l +

1
2

)
M

)
r∗

⊗ 1Iω (70)

where the matrices L and M are defined by (36), and

J∞Ψ0 ∈ Hln. (71)

J∞ being a bounded operator, it suffices to prove that for

Ψ0 ∈ D∞ln ; Supp(Ψ0) ⊂ B(0, R), (72)

we have ∥∥(HJ∞ − J∞H∞) eiH∞tΨ0

∥∥
H ∈ L

1(IRt). (73)

(63) yields
eiH∞tΨ0 = 0 in {(t, r∗, θ, ϕ); 0 ≤ r∗ ≤ |t| −R} . (74)

Thus, for |t| large enough

∥∥(HJ∞ − J∞H∞) eiH∞tΨ0

∥∥
H =

∥∥∥∥(αr − 1
r∗

)(
l +

1
2

)
MeiH∞tΨ0

∥∥∥∥
H

≤
(
l +

1
2

)
‖Ψ0‖H∞

∥∥∥∥αr − 1
r∗

∥∥∥∥
L∞([|t|+R,+∞[r∗ )

.

We study the asymptotic behavior of

α

r
− 1
r∗

=
1
r∗

(
F 1/2eδ r∗

r
− 1
)

when r∗ goes to +∞. The Regge-Wheeler variable r∗ is defined with respect to r by

r∗ =
1

2κ0

{
Log|r − r0| −

∫ r

r0

[
1

r − r0
− 2κ0

Feδ

]
dr

}
(75)
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where 2κ0 = F ′(r0). For r larger than r0 + 1, we have

r∗ = C +
∫ r

r0+1

F−1e−δdr (76)

where

2κ0C = −
∫ r0+1

r0

[
1

r − r0
− 2κ0

Feδ

]
dr. (77)

F and δ satisfy
δ(r) = o(r−1) ; F (r) = 1− r1

r
+O(r−2) r1 > 0 ; r → +∞

and therefore
F−1(r)e−δ(r) = 1 +

r1
r

+ o(r−1),

r∗ = r + r1Log(r) + o(Log(r)),

F 1/2(r)eδ(r) = 1− r1
2r

+ o(r−1)

which implies

F 1/2(r)eδ(r) r∗
r
− 1 = r1

Log(r)
r

+ o

(
Log(r)
r

)
= O(r−1/2) = O(r−1/2

∗ ).

The operators W±
∞ are thus well-defined. The fact that they are isometries and do not depend on the choice

of the cut-off function can be verified using exactly the same remarks as in the case of the horizon.

Q.E.D.

6 Asymptotic completeness of operators W±
0 and W±

∞
(massless case)

We assume again that m = 0 and r+ = +∞. We introduce the inverse wave operators at the horizon and at
infinity, defined for Ψ0 ∈ H by

W̃±
0 Ψ0 = s− lim e−iH0tJ ∗0 eiHtΨ0 in H,

t→ ±∞ (78)

W̃±
∞Ψ0 = s− lim e−iH∞tJ ∗∞eiHtΨ0 in H∞,

t→ ±∞ (79)

where J ∗0 and J ∗∞ are respectively the adjoints of J0 and J∞. We also define the wave operators W+ and
W− by

Ψ0 ∈ H±0 , Ψ∞ ∈ H∞ W± (Ψ0,Ψ∞) = W±
0 Ψ0 +W±

∞Ψ∞ (80)

as well as the inverse wave operators W̃+, W̃−

Ψ0 ∈ H W̃±Ψ0 =
(
W̃±

0 Ψ0, W̃
±
∞Ψ0

)
. (81)

Eventually, we define the scattering operator

S = W̃+W−. (82)

Theorem 6.1. Operators W̃±
0 (resp. W̃±

∞) are well defined from H into H±0 (resp. from H into H∞), are
independent of the choice of χo (resp. χ∞) and their norm is lower or equal to 1. Moreover

W± is an isometry of H±0 ×H∞ onto H.
W̃± is an isometry of H onto H±0 ×H∞.

S is an isometry of H−0 ×H∞ onto H+
0 ×H∞.
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Proof: For any solution Ψ of (15) in C (IRt;Hln), (l, n),∈ I 1
2
, we construct asymptotic profiles at the

horizon and at infinity. The idea is that each component of Ψ satisfies an equation of the form(
∂2

t − ∂2
r∗ + V (r∗)

)
f = 0 (83)

where the potential V has the following properties

V = V+ − V− ; V+, V− ≥ 0,
V+(r∗) ≤ C(1 + |r∗|)−1−ε , ε > 0, (84)
V−(r∗) ≤ C(1 + |r∗|)−2−ε , ε > 0.

We then apply the scattering results of [3]. This suffices to define W̃±
0 , but to prove the existence of W̃±

∞,
we need to recover a solution of (∂t − iH∞)Ψ = 0 from the asymptotic profile at infinity.

Firstly, we study some spectral properties of the operator H:

Proposition 6.1. The point spectrum of H is empty.

A straightforward consequence of proposition 6.1 is

Corollary 6.1. For k ∈ IN, the direct sum of the sets

Ek
ln =

{
HkΨ; Ψ = t (f1, f2, f3, f4)⊗ Fln ∈ Hln , 1 ≤ i ≤ 4 fi ∈ C∞0 (IRr∗)

}
; (l, n) ∈ I 1

2
(85)

is dense in H.

Proof of proposition 6.1: Let

Ψln = φ⊗ Fln ∈ Hln ; φ = t (f1, f2, f3, f4) ∈
[
L2(IR, dr2∗)

]4
(86)

such that
HΨln = λΨln ; λ ∈ IR. (87)

Equation (87) is equivalent to

f ′1 = −βlf2 − iλf3,

f ′2 = −βlf1 + iλf4,

f ′3 = −βlf4 − iλf1,

f ′4 = −βlf3 + iλf2,

βl(r∗) =
(
l +

1
2

)
F 1/2eδ

r
. (88)

We first consider the case λ = 0. Putting

g1 = f1 + f2 , g2 = f2 − f1,

g3 = f3 + f4 , g4 = f4 − f3,
(89)

we see that g1 and g3 are solutions of
g′ = −βl.g, (90)

while g2 and g4 satisfy
f ′ = βl.f. (91)

Thus λ = 0 is an eigenvalue for H if and only if there exists l = 1
2 + k, k ∈ IN, such that both equations (90)

and (91) have solutions in L2
(
IRr∗ ; dr

2
∗
)
. βl being smooth on IR, any solution of (90) or (91) in L1

loc(IR) is
necessarily smooth. Moreover, βl decreases exponentially when r∗ goes to −∞, thus

∀r1∗ ∈ IR βl ∈ L1
(
]−∞, r1∗[

)
(92)

and both integral equations

f(r∗) = 1 +
∫ r∗

−∞
βl.fdr∗, (93)
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g(r∗) = 1−
∫ r∗

−∞
βl.gdr∗ (94)

have a unique solution in L∞
(
]−∞, r1r∗ [

)
, which can be extended on IR as a smooth but not square integrable

function. Therefore, (90) and (91) have no non trivial solution in L2(IR) and λ = 0 is not an eigenvalue for
H.

If now we suppose λ 6= 0, the components of φ satisfy

f ′′1 =
(
β2

l − λ2
)
f1 − β′lf2,

f ′′2 =
(
β2

l − λ2
)
f2 − β′lf1,

f ′′3 =
(
β2

l − λ2
)
f3 − β′lf4,

f ′′4 =
(
β2

l − λ2
)
f4 − β′lf3.

(95)

Functions g1 = f1 + f2 and g3 = f3 + f4 are eigenvectors in L2(IR) for the operator

L1 = −∂2
r∗ + β2

l (r∗)− β′l(r∗) (96)

associated with the eigenvalue λ2 > 0, whereas g2 = f2 − f1 and g4 = f4 − f3 are eigenvectors in L2(IR) for
the operator

L2 = −∂2
r∗ + β2

l (r∗) + β′l(r∗) (97)

associated with the eigenvalue λ2 > 0. It is easily seen that potentials

V1(r∗) = β2
l (r∗)− β′l(r∗) (98)

and
V2(r∗) = β2

l (r∗) + β′l(r∗) (99)

satisfy (84). Therefore, the operators L1 and L2 are of the same type as the second order operators studied
in [3] and have no strictly positive eigenvalue.

Q.E.D.

Proof of corollary 6.1: For (l, n) ∈ I 1
2

and k ∈ IN, if

Ψ = φ⊗ Fln ∈ Hln ; φ ∈ [C∞0 (IRr∗)]
4
,

then Ψ belongs to D
(
Hk |Hln

)
. Ek

ln is well-defined and is a subset of Hln. To prove corollary 6.1 it suffices
to establish that for (l, n) ∈ I 1

2
and k ∈ IN, Ek

ln is dense in Hln. Let

Ψ0 = φ0 ⊗ Fln ∈ Hln

be orthogonal to Ek
ln. Then, for φ ∈ [C∞0 (IRr∗)]

4

(
φ0,H

k |Hln
φ
)
L2(IRr∗ )

= 0,

Hk |Hln
being here considered as an operator on

[
L2(IRr∗)

]4. We have

Hk |Hln
φ0 = 0 in [D′ (IRr∗)]

4 (100)

where D′(IRr∗) is the space of distributions on IRr∗ . From (100), we deduce that Ψ0 belongs to D(Hk |Hln
)

and
HkΨ0 = 0 in Hln. (101)

We know by proposition 6.1 that (101) has no non-trivial solution in Hln. Thus Ek
ln is dense in Hln.

Q.E.D.
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We also study the spectral properties of operators L1, L2. We recall their definition for l − 1/2 ∈ IN

i = 1, 2 Li = −∂2
r∗ + Vi(r∗) ; Vi(r∗) = β2

l (r∗) + (−1)iβ′l(r∗). (102)

Proposition 6.2. For l − 1/2 ∈ IN, the spectrum of operators L1 and L2 is purely absolutely continuous.

Proof: We already know that potentials V1 and V2 satisfy (84), which, from [3] implies that the singular
spectrum of L1 and L2 is empty, that their absolutely continuous spectrum is [0,+∞[ and that their point
spectrum contains at the most a finite number of negative or zero eigenvalues, all of them being simple.
Furthermore, V1 and V2 decrease exponentially when r∗ → −∞ and 0 is not an eigenvalue. We show that
L1 and L2 do not have any strictly negative eigenvalue either by a method similar to the one used in [3].
We recall that for l − 1/2 ∈ IN, equations

1 ≤ i ≤ 2 Lif = 0 (103)

both have on IRr∗ a unique continuous strictly positive solution, given respectively by (93) and (94). We
consider the general case of a potential

V ∈ L∞(IRr∗) ∩ L2(IRr∗) (104)

such that there exists a function g, continuous and strictly positive on IRr∗ , satisfying

LV g = 0 ; LV = −∂2
r∗ + V. (105)

Let f ∈ L2(IRr∗) be such that
LV f = −λf , λ > 0, (106)

which implies
f ∈ H2(IRr∗). (107)

We define the cut-off function

χ ∈ C∞0 (IRr∗) , for |r∗| ≤
1
2

χ(r∗) = 1 , for |r∗| ≥ 1 χ(r∗) = 0. (108)

Putting for n ≥ 1
fn(r∗) = χ

(r∗
n

)
f(r∗), (109)

we easily see that ∫
[−n,n]

(
|f ′n|

2 + V |fn|2
)
dr∗ = −λ

∫
[−n

2 , n
2 ]
|f |2 dr∗ + o (1) . (110)

Thus, for n large enough ∫
[−n,n]

[
|f ′n|

2 + V |fn|2
]
dr∗ < 0.

The operator −∂2
r∗ + V on L2([−n, n]) with domain {y ∈ H2([−n, n]); y(±n) = 0} has a strictly negative

eigenvalue −λn associated with an eigenvector u −u′′ + V u = −λnu ; − n < r∗ < n,

u(−n) = u(n) = 0.
(111)

Even if it means changing u into −u, there exist α and β such that

−n ≤ α < β ≤ n,

u(α) = u(β) = 0 , u′(α) > 0 , u′(β) < 0, (112)
u > 0 for α < r∗ < β.

We denote

I =
∫ β

α

(u′g − ug′)′ dr∗.
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On the one hand, we can write
I = u′(β)g(β)− u′(α)g(α),

g being strictly positive on IR, (112) yields
I < 0.

On the other hand
(u′g − ug′)′ = u′′g − g′′u = −λnug,

thus

I = λn

∫ β

α

ugdr∗ > 0.

We end up with a contradiction, which means that LV has no strictly negative eigenvalue.

Q.E.D.

We now prove the existence of the inverse wave operators W̃±
0 and W̃±

∞. For (l, n) ∈ I 1
2
, we consider

the orthogonal decomposition of Hln

Hln = H+
ln ⊕H

−
ln , H±ln =

{
Ψ = t (f1, f2, f3, f4)⊗ Fln ∈ Hln ; f2 = ∓f1 , f4 = ±f3

}
. (113)

Each H±ln is stable under H and by corollary 6.1, for (l, n) ∈ I 1
2
, k ∈ IN, the sets

Ek±
ln = Ek

ln ∩H±ln =
{
HkΨ; Ψ = t (f1,∓f1, f3,±f3)⊗ Fln ∈ H±ln; f1, f3 ∈ C∞0 (IRr∗)

}
(114)

are respectively dense in H+
ln and H−ln. For Ψ0 ∈ E2±

ln we establish the existence of the strong limits (78) and
(79) defining W̃±

0 Ψ0 and W̃±
∞Ψ0. The following lemma guarantees the existence of asymptotic profiles for

Ψ0. The details of its proof will be given after the proof of theorem 6.1.

Lemma 6.1. Given Ψ0 ∈ E2±
ln , (l, n) ∈ I 1

2
, there exists

Ψ1 ∈
[
C
(
IRt;H1(IRr∗)

)
∩ C1

(
IRt;L2(IRr∗)

)]4 ⊗ Fln (115)

such that
∂tΨ1 = iH0Ψ1, (116)

and

s− lim
t→ +∞

∥∥eiHtΨ0 −Ψ1(t)
∥∥
H = 0. (117)

Any solution of (116) in C(IRt;H) and in particuliar Ψ1 can be expressed in the form

Ψ1(t) = eiH0tΨ+
0 + eiH0tΨ−

0 (118)

where
Ψ+

0 ∈ H
+
0 , Ψ−

0 ∈ H−0 . (119)

Thus, for a cut-off function χo satisfying (44), we have

lim
t→ +∞

∥∥J0Ψ1(t)− eiH0tΨ+
0

∥∥
H = 0. (120)

That is to say that for Ψ0 ∈ E2ε
ln , (l, n) ∈ I 1

2
, ε = +,−, there exists

Ψ+
0 ∈ H

+
0 ∩Hε

ln (121)

such that

lim
t→ +∞

∥∥J0e
iHtΨ0 − eiH0tΨ+

0

∥∥
H = 0. (122)
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and of course, we can similarly prove the existence of

Ψ−
0 ∈ H−0 ∩Hε

ln (123)

such that

lim
t→ −∞

∥∥J0e
iHtΨ0 − eiH0tΨ−

0

∥∥
H = 0. (124)

From (121) to (124), we conclude that W̃±
0 Ψ0 is well-defined for Ψ0 ∈ E2ε

ln , (l, n) ∈ I 1
2
, ε = +,−, and

W̃±
0 Ψ0 ∈ H±0 ,

∥∥∥W̃±
0 Ψ0

∥∥∥
H0

≤ ‖Ψ0‖H. (125)

Then, corollary 6.1 yields that the operator W̃+
0 (resp. W̃−

0 ) is well-defined from H to H+
0 (resp. H−0 ) and

its norm is lower or equal to 1.
In order to prove the existence of W̃+

∞, we need to compare in the neighbourhood of the future infinity
the outgoing part of Ψ1(t) with a solution of

(∂t − iH∞) Ψ = 0. (126)

Lemma 6.2. The operator W∞
0

W∞
0 Ψ0 = s− lim

t→ +∞
e−iH∞tJ ∗∞eiH0tΨ0 (127)

is well-defined from H−0 to H∞ and is independent of the choice of χ∞ satisfying (65). Of course W∞
0 is

defined as well from H+
0 to H∞ and for Ψ0 ∈ H+

0

W∞
0 Ψ0 = 0.

Lemma 6.2, and (118), (119) yield the existence of

Ψ+
∞ ∈ H∞ (128)

such that

lim
t→ +∞

∥∥J ∗∞Ψ1(t)− eiH∞tΨ+
∞
∥∥
H∞

= 0 (129)

and therefore

lim
t→ +∞

∥∥J ∗∞eiHtΨ0 − eiH∞tΨ+
∞
∥∥
H∞

= 0. (130)

which enables us to define W̃+
∞ on E2±

ln , (l, n) ∈ I 1
2

and by density on H. The same thing can be done for
W̃−
∞. Let χ∞ and χ′∞ be two cut-off functions satisfying (65) and J∞ and J ′∞ the associated identifying

operators. For t ∈ IR, Ψ0 ∈ H∥∥e−iH∞tJ ∗∞eiHtΨ0 − e−iH∞tJ ′∗∞eiHtΨ0

∥∥
H∞

≤
∥∥(χ∞ − χ′∞)eiHtΨ0

∥∥
H ,

and

lim
t→ ±∞

∥∥e−iH∞tJ ∗∞eiHtΨ0 − e−iH∞tJ ′∗∞eiHtΨ0

∥∥
H∞

= 0.

Thus, the operators W̃±
∞ are independent of the choice of χ∞ and by a similar argument, W̃±

0 are independent
of the choice of χo.

We still have to prove that W± and W̃± are bijective isometries, which yields that S is a bijective
isometry by construction. Let Ψ ∈ H and

Ψ±
0 = W̃±

0 Ψ , Ψ±
∞ = W̃±

∞Ψ. (131)
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For χo satisfying (44) and χ∞ satisfying (65), we have

lim
∥∥J0

(
eiHtΨ− eiH0tΨ±

0

)∥∥
H = 0,

t→ ±∞ (132)

lim
∥∥J∞J ∗∞eiHtΨ− J∞eiH∞tΨ±

∞
∥∥
H = 0,

t→ ±∞ (133)

J∞J ∗∞ being simply the multiplication by χ∞. The local energy of eiHtΨ goes to 0 when t goes to ±∞,
therefore

lim
∥∥(χo + χ∞ − 1) eiHtΨ

∥∥
H = 0.

t→ ±∞ (134)

(132), (133) and (134) imply

lim
∥∥eiHtΨ− J0e

iH0tΨ±
0 − J∞eiH∞tΨ±

∞
∥∥
H = 0,

t→ ±∞ (135)

which means
W±W̃± = 1IH. (136)

If on the other hand we consider
Ψ±

0 ∈ H±0 , Ψ±
∞ ∈ H∞ (137)

and put
Ψ = W± (Ψ±

0 ,Ψ
±
∞
)
, (138)

we have (135) from which we get

lim
∥∥J ∗0 (eiHtΨ− J0e

iH0tΨ±
0 − J∞eiH∞tΨ±

∞
)∥∥
H = 0

t→ ±∞ (139)

lim
∥∥J ∗∞ (eiHtΨ− J0e

iH0tΨ±
0 − J∞eiH∞tΨ±

∞
)∥∥
H∞

= 0.
t→ ±∞ (140)

The local energy of eiH0tΨ±
0 and eiH∞tΨ±

∞ goes to 0 when |t| goes to +∞, therefore (139) and (140) yield

lim
t→ ±∞

∥∥J ∗0 eiHtΨ− eiH0tΨ±
0

∥∥
H = 0 (141)

and

lim
t→ ±∞

∥∥J ∗∞eiHtΨ− eiH∞tΨ±
∞
∥∥
H∞

= 0, (142)

thus
W̃±W± = 1IH±0 ×H∞ . (143)

(136) and (143) show that W± and W̃± are all bijections and if we choose χo and χ∞ such that their
supports have no intersection, we deduce from (135)

‖Ψ‖H =
∥∥Ψ±

0

∥∥
H +

∥∥Ψ±
∞
∥∥
H∞

. (144)

Q.E.D.

Proof of lemma 6.1: Let Ψ0 ∈ E2ε
ln , (l, n) ∈ I 1

2
, ε = +,−. There exists

Ψ′
0 = t (f1,−εf1, f3, εf3)⊗ Fln ∈ E1ε

ln (145)

such that
Ψ0 = iHΨ′

0 (146)
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and
Ψ′′

0 = t (g1,−εg1, g3, εg3)⊗ Fln ∈ E0ε
ln (147)

such that
Ψ′

0 = −iHΨ′′
0 . (148)

We denote
Ψ̃ = eiHtΨ′

0 ; Ψ̃ = φ̃⊗ Fln = t (φ1,−εφ1, φ3, εφ3)⊗ Fln (149)

and
Ψ = ∂tΨ̃ = iHΨ̃. (150)

On the one hand, applying ∂t + iH to equation

(∂t − iH) Ψ̃ = 0,

we obtain (
∂2

t −H2
)
Ψ̃ = 0

which, taking into account the fact that Ψ̃ takes its values in Hln can also be written(
∂2

t − ∂2
r∗ + β2

l + εβ′l
)
φ1 = 0, (151)(

∂2
t − ∂2

r∗ + β2
l − εβ′l

)
φ3 = 0. (152)

On the other hand
φ1 |t=0= f1 ; φ3 |t=0= f3 ; f1, f3 ∈ C∞0 (IRr∗) (153)

and since Ψ0 = H2Ψ′′
0

∂tφ1 |t=0=
(
−∂2

r∗ + β2
l + εβ′l

)
g1 , g1 ∈ C∞0 (IRr∗) (154)

∂tφ3 |t=0=
(
−∂2

r∗ + β2
l − εβ′l

)
g3 , g3 ∈ C∞0 (IRr∗). (155)

The scattering results obtained in [3] together with proposition 6.2 imply that for any solution

f ∈ C
(
IRt;H1 (IRr∗)

)
∩ C1

(
IRt;L2 (IRr∗)

)
of equation (

∂2
t − ∂2

r∗ + β2
l + ηβ′l

)
f = 0 , η = +,−

with initial data
f |t=0= µ1 , ∂tf |t=0=

(
−∂2

r∗ + β2
l + ηβ′l

)
µ2

such that
i = 1, 2 µi ∈ L2(IRr∗) ;

(
−∂2

r∗ + β2
l + ηβ′l

)
µi ∈ L2(IRr∗),

there exists a solution
f1 ∈ C

(
IRt;H1 (IRr∗)

)
∩ C1

(
IRt;L2 (IRr∗)

)
(156)

of (
∂2

t − ∂2
r∗

)
f1 = 0 (157)

such that

lim
t→ +∞

‖f(t)− f1(t)‖H1(IRr∗ )
+ ‖∂tf(t)− ∂tf1(t)‖L2(IRr∗ )

.

Ψ̃ is the solution of (15) with initial data

Ψ′
0 ∈ [C∞0 (IRr∗)]

4 ⊗ Fln

therefore in particular,
φ1, φ2 ∈ C

(
IRt;H1 (IRr∗)

)
∩ C1

(
IRt;L2 (IRr∗)

)
and (151) to (155) yield the existence of

Ψ̃1 ∈
[
C
(
IRt;H1(IRr∗)

)
∩ C1

(
IRt;L2(IRr∗)

)]4 ⊗ Fln
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such that (
∂2

t − ∂2
r∗

)
Ψ̃1 = 0

and

lim
t→ +∞

∥∥∥eiHtΨ̃0 − Ψ̃1

∥∥∥
H

= 0 , lim
t→ +∞

∥∥∥∂r∗

(
eiHtΨ̃0 − Ψ̃1

)∥∥∥
H

= 0

lim
t→ +∞

∥∥∥∂t

(
eiHtΨ̃0 − Ψ̃1

)∥∥∥
H

= 0

from which we deduce

lim
t→ +∞

∥∥∥eiHtΨ0 − ∂tΨ̃1

∥∥∥
H

= 0. (158)

Ψ0 being an element of E2ε
ln ⊂ E1ε

ln , we can apply the previous construction to Ψ0. We find that there exists

Ψ1 ∈
[
C
(
IRt;H1(IRr∗)

)
∩ C1

(
IRt;L2(IRr∗)

)]4 ⊗ Fln

solution of (
∂2

t − ∂2
r∗

)
Ψ1 = 0

such that

lim
t→ +∞

∥∥eiHtΨ0 −Ψ1

∥∥
H = 0 , lim

t→ +∞

∥∥∂r∗

(
eiHtΨ0 −Ψ1

)∥∥
H = 0, (159)

lim
t→ +∞

∥∥∂t

(
eiHtΨ0 −Ψ1

)∥∥
H = 0. (160)

From (159) and (160) we deduce

lim
t→ +∞

∥∥(∂t − iH0)
(
eiHtΨ0 −Ψ1

)∥∥
H = 0. (161)

eiHtΨ0 being a solution of (15) in C (IRt;Hln), we have

(∂t − iH) eiHtΨ0 = (∂t − iH0 − iβlM) eiHtΨ0 = 0 (162)

and by (158)

lim
t→ +∞

∥∥∥iβlM
(
eiHtΨ0 − ∂tΨ̃1

)∥∥∥
H

= 0.

∂tΨ̃1 is identically zero in {
(t, r∗, ω); |r∗| ≤ |t| −R , ω ∈ S2

}
,

which is not true in general for Ψ̃1, therefore

lim
t→ +∞

∥∥∥iβlM∂tΨ̃1

∥∥∥
H

= 0

and

lim
t→ +∞

∥∥iβlMeiHtΨ0

∥∥
H = 0. (163)
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(161), (162) and (163) give

lim
t→ +∞

‖(∂t − iH0) Ψ1‖H = 0

and (∂t − iH0) Ψ1 being an element of C (IRt;H) and satisfying

(∂t + iH0) [(∂t − iH0) Ψ1] = 0

we must have
(∂t − iH0) Ψ1 = 0.

Q.E.D.

Proof of lemma 6.2: Let

Ψ0 ∈ H−0 ∩ E0ε
ln , (l, n) ∈ I 1

2
, ε = +,− (164)

with
Supp(Ψ0) ⊂ [−R,R]r∗ × S2

θ,ϕ , R > 0. (165)

Ψ0 can be written

Ψ0 = t (f0,−εf0, f0, εf0)⊗ Fln , f0 ∈ C∞0 (IRr∗) Suppf0 ⊂ [−R,R] (166)

and
eiH0tΨ0 = t (f,−εf, f, εf)⊗ Fln , f(t, r∗) = f0(r∗ − t). (167)

f is the solution of (
∂2

t − ∂2
r∗

)
f = 0 (168)

associated with the initial data
f |t=0= f0 , ∂tf |t=0= −∂r∗f0. (169)

Instead of applying Cook’s method to operators H∞ and H0, which would give an apparently long-range
perturbation at infinity, we work on the second order scalar equations and establish the existence of gη

solution of { (
∂2

t − ∂2
r∗ + Vη(r∗)

)
gη = 0

Vη(r∗) = χ∞(r∗) 1
r2
∗

((
l + 1

2

)2 + η
(
l + 1

2

))
, η = +,−, (170)

where χ∞ is a cut-off function satisfying (65); the solution gη being such that

lim
t→ +∞

‖∂t (gη − f)‖L2(IR) = 0 , lim
t→ +∞

‖∂r∗ (gη − f)‖L2(IR) = 0, (171)

lim
t→ +∞

∥∥∥∥ l + 1
2

r
(gη − f)

∥∥∥∥
L2(IR)

= 0. (172)

In the case where l = 1/2 and η = −, equations (168) and (170) are the same and it suffices to take g− = f .
Let us now assume (

l +
1
2

)2

+ η

(
l +

1
2

)
> 0. (173)

We write equations (168) and (170) in their hamiltonian form

∂t

(
f
∂tf

)
= −

(
0 −1

−∂2
r∗ 0

)(
f
∂tf

)
= −A0

(
f
∂tf

)
, (174)

∂t

(
g
∂tg

)
= −

(
0 −1

−∂2
r∗ + Vη 0

)(
g
∂tg

)
= −Aη

(
g
∂tg

)
. (175)
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The operator iA0 is skew-adjoint with dense domain on

IH0 = BL1(IRr∗)× L2(IRr∗) (176)

completion of [C∞0 (IRr∗)]
2 for the norm∥∥ t (f1, f2)

∥∥2

IH0
=
∫

IR

{
|∂r∗f1|

2 + |f2|2
}
dr∗ (177)

and iAη is skew-adjoint with dense domain (cf. [3]) on

IH = IH1 × L2(IRr∗) (178)

completion of [C∞0 (IRr∗)]
2 for the norm∥∥ t (g1, g2)

∥∥2

IH
=
∫

IR

{
|∂r∗g1|

2 + |g2|2 + Vη|g1|2
}
dr∗. (179)

Under assumption (173), the norm (179) is equivalent to

∣∣∣∣∣∣ t (g1, g2)
∣∣∣∣∣∣2 =

∥∥ t (g1, g2)
∥∥2

IH0
+

∥∥∥∥∥
(
l + 1

2

)
χ∞

r∗
g1

∥∥∥∥∥
2

L2(IRr∗ )

. (180)

Moreover, any solution t (g, ∂tg) ∈ C (IRt; IH) of (170) satisfies the following energy estimate: for r1∗ < r2∗
and t ∈ IR ∫

r1
∗<r∗<r2

∗

{
|∂r∗g(t)|

2 + |∂tg(t)|2 + Vη(r∗)|g(t)|2
}
dr∗ (181)

≤
∫

r1
∗−|t|<r∗<r2

∗+|t|

{
|∂r∗g(0)|2 + |∂tg(0)|2 + Vη(r∗)|g(0)|2

}
dr∗

which is very easily obtained by multiplying (170) by ∂tg and integrating by parts on the domain

Ωt,r1
∗,r

2
∗

=
{
(τ, r∗); τ ∈ (0, t), r1∗ − |t− τ | < r∗ < r2∗ + |t− τ |

}
. (182)

f0 being in C∞0 (IRr∗), we can consider that

e−A0t
[

t (f0,−∂r∗f0)
]
∈ C (IRt; IH)

and we apply Cook’s method to prove the existence in IH of the limit(
g0η

g1η

)
= s− lim

t→ +∞
eAηte−A0t

(
f0

−∂r∗f0

)
. (183)

We shall denote
φ0 = t (f0,−∂r∗f0) , φ∞ = t (g0η, g1η) . (184)

We have∥∥∂t

(
eAηte−A0tφ0

)∥∥
IH

=
∥∥(Aη −A0) e−A0tφ0

∥∥
IH

= ‖Vη(r∗)f0(r∗ − t)‖L2(IRr∗ )
≤ ‖f0‖L2(IRr∗ )

‖Vη‖L∞(r∗>t−R)

and for r∗ large enough
Vη(r∗) = Cr−2

∗ , C > 0, (185)

thus ∥∥∂t

(
eAηte−A0tφ0

)∥∥
IH

= O(t−2) ; t→ +∞,

and ∥∥∂t

(
eAηte−A0tφ0

)∥∥
IH
∈ L1(t > 0).

The limit (183)is therefore well-defined and if gη is the solution of (170) such that(
gη(t)
∂tgη(t)

)
= e−Aηtφ∞, (186)
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then

lim
t→ +∞

∥∥ t (gη, ∂tgη)− t (f, ∂tf)
∥∥

IH
= 0. (187)

This last limit together with the equivalence of norms (179) and (180) gives (171) and (172). Moreover, for
r∗ < t−R

gη(t, r∗) = 0 and ∂tgη(t, r∗) = 0. (188)

Indeed, for t ∈ IR, ε > 0 we choose τ ∈ IR such that∥∥φ∞ − eiAητe−iA0τφ0

∥∥
IH
≤ ε , τ ≥ t. (189)

For t(f1, f2) ∈ IH, we denote

L
(

t(f1, f2)
)

= |∂r∗f1|
2 + Vη|f1|2 + |f2|2. (190)

Let us consider ∫
r∗<t−R

L
(
e−iAηtφ∞

)
dr∗ ≤

∫
r∗<t−R

L
[
e−iAηt

(
φ∞ − eiAητe−iA0τφ0

)]
dr∗

+
∫

r∗<t−R

L
(
e−iAη(t−τ)e−iA0τφ0

)
dr∗.

(181) and (189) yield ∫
r∗<t−R

L
(
e−iAηtφ∞

)
dr∗ ≤ ε2 +

∫
r∗<τ−R

L
(
e−iA0τφ0

)
dr∗

and this last integral is zero since

Supp
(
e−iA0τφ0

)
⊂ [τ −R, τ +R].

(188) is therefore satisfied and for t large enough gη is a solution of[
∂2

t − ∂2
r∗ +

1
r2∗

((
l +

1
2

)2

+ η

(
l +

1
2

))]
gη = 0. (191)

Let us now introduce
Ψ̃∞(t) = t (g−ε(t),−εg−ε(t), gε(t), εgε(t))⊗ Fln. (192)

There exists t0 > 0 such that, for t ≥ t0, gε and g−ε satisfy[
∂2

t − ∂2
r∗ +

1
r2∗

((
l +

1
2

)2

+ ε

(
l +

1
2

))]
gε = 0, (193)

[
∂2

t − ∂2
r∗ +

1
r2∗

((
l +

1
2

)2

− ε

(
l +

1
2

))]
g−ε = 0 (194)

with
gε, g−ε ∈ C ([t0,+∞[; IH1) , ∂tgε, ∂tg−ε ∈ C

(
[t0,+∞[;L2(IRr∗)

)
. (195)

Moreover, for t ≥ t0

Supp (gε(t), g−ε(t), ∂tgε(t), ∂tg−ε(t)) ⊂ [t−R,+∞[ ⊂ [0,+∞[. (196)

Thus, the quantities

∂tΨ̃∞, ∂r∗Ψ̃∞,

(
l +

1
2

)
r−1
∗ Ψ̃∞
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belong to C ([t0,+∞[;H) and (171), (172) yield

lim
t→ +∞

∥∥∥∂t

(
Ψ̃∞(t)− eiH0tΨ0

)∥∥∥
H

= 0 lim
t→ +∞

∥∥∥∂r∗

(
Ψ̃∞(t)− eiH0tΨ0

)∥∥∥
H

= 0, (197)

lim
t→ +∞

∥∥∥∥(l + 1
2

)
r−1
∗

(
Ψ̃∞(t)− eiH0tΨ0

)∥∥∥∥
H

= 0. (198)

In particular, we have

lim
t→ +∞

∥∥∥∥(∂t + L∂r∗ − i

(
l +

1
2

)
r−1
∗ M

)(
Ψ̃∞(t)− eiH0tΨ0

)∥∥∥∥
H

= 0. (199)

Since eiH0tΨ0 is a solution of
(∂t + L∂r∗) e

iH0tΨ0 = 0,

we have∥∥∥∥(∂t + L∂r∗ − i

(
l +

1
2

)
r−1
∗ M

)
eiH0tΨ0

∥∥∥∥
H

=
(
l +

1
2

)∥∥r−1
∗ eiH0tΨ0

∥∥
H = O(t−1) t→ +∞

and therefore

lim
t→ +∞

∥∥∥∥(∂t + L∂r∗ − i

(
l +

1
2

)
r−1
∗ M

)
Ψ̃∞(t)

∥∥∥∥
H

= 0. (200)

We introduce
Ψ∞ = Ψ̃∞ |{r∗≥0} . (201)

The quantities

∂tΨ∞ , ∂r∗Ψ∞ ,

(
l +

1
2

)
r−1
∗ Ψ∞

belong to C
(
[t0,+∞[;Hεln

∞
)

where, for (l, n) ∈ I 1
2

and ε = +,−

Hεln
∞ =

{
t (f,−εf, g, εg)⊗ Fln ∈ H∞

}
. (202)

From (200), we get

lim
t→ +∞

∥∥∥∥(∂t + L∂r∗ − i

(
l +

1
2

)
r−1
∗ M

)
Ψ∞(t)

∥∥∥∥
H∞

= 0 (203)

and, the function (
∂t + L∂r∗ − i

(
l +

1
2

)
r−1
∗ M

)
Ψ∞ ∈ C

(
[t0,+∞[;Hεln

∞
)

satisfies (
∂t − L∂r∗ + i

(
l +

1
2

)
r−1
∗ M

)[(
∂t + L∂r∗ − i

(
l +

1
2

)
r−1
∗ M

)
Ψ∞

]
= 0. (204)

Therefore, we must have for t ≥ t0(
∂t + L∂r∗ − i

(
l +

1
2

)
r−1
∗ M

)
Ψ∞(t) = 0 in H∞.

IH1 being a distribution space, we can write in the sense of distributions for t ≥ t0

∂t

(
∂t + L∂r∗ − i

(
l +

1
2

)
r−1
∗ M

)
Ψ∞(t) =

(
∂t + L∂r∗ − i

(
l +

1
2

)
r−1
∗ M

)
∂tΨ∞(t) = 0 in H∞,
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which implies that ∂tΨ∞ is a solution in C
(
[t0,+∞[;Hεln

∞
)

of

(∂t − iH∞) Ψ = 0.

This solution can be extended to C
(
IRt;Hεln

∞
)

and we denote

Ψ0
∞ = e−iH∞t0∂tΨ∞(t0) (205)

its initial data at t = 0. From (196), (197), we get

lim
t→ +∞

∥∥eiH∞tΨ0
∞ − J ∗∞∂t

(
eiH0tΨ0

)∥∥
H∞

= 0. (206)

The value of ∂t

(
eiH0tΨ0

)
at t = 0 is iH0Ψ0. H0 is a self-adjoint operator with dense domain on H, its point

spectrum is empty and the spaces H±0 , H±ln are invariant under H0. Therefore the direct sum of the sets{
H0Ψ0; Ψ0 ∈ H−0 ∩ E0ε

ln

}
; (l, n) ∈ I 1

2
, ε = +,− (207)

is dense in H−0 . (206) shows that for an initial data H0Ψ0 in a set of type (207), the limit

Ψ0
∞ = s− lim

t→ +∞
e−iH∞tJ ∗∞eiH0tH0Ψ0 (208)

exists in H∞. The operator W∞
0 is consequently well-defined from H0 into H∞. Since the local energy of

the solution eiH0tH0Ψ0 goes to zero when |t| goes to +∞, the limit Ψ0
∞ is independent of the choice of χ∞

satisfying (65).

Q.E.D.

7 Conclusion

The scattering theory developed in this paper is only valid for the linear massless Dirac system. In the
case of a massive field and when space-time is asymptotically flat, the mass of the field induces long-range
perturbations at infinity and classical wave operators will probably not exist. However, using the methods
developed by J. Dollard and G. Velo [10] and by V. Enss and B. Thaller [11] about the relativistic Coulomb
scattering of Dirac fields as well as the works of A. Bachelot [1] and J. Dimock and B. Kay [9] on the Klein-
Gordon equation on the Schwarzschild metric, it must be possible to show the existence and asymptotic
completeness of Dollard-modified wave operators at infinity.
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