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Abstract

We extend the results of a work by L. Hérmander [9] concerning the resolution of the charac-
teristic Cauchy problem for second order wave equations with regular first order potentials. The
geometrical background of this work was a spatially compact spacetime with smooth metric.
The initial data surface was spacelike or null at each point and merely Lipschitz. We lower
the regularity hypotheses on the metric and potential and obtain similar results. The Cauchy
problem for a spacelike initial data surface is solved for a Lipschitz metric and coefficients of the
first order potential that are Lj5 , with the same finite energy solution space as in the smooth
case. We also solve the fully characteristic Cauchy problem with very slightly more regular
metric and potential : essentially, a C! metric and a potential with continuous coefficients of the
first order terms and locally L coeflicients for the terms of order 0.

Résumé

Nous étendons des résultats dus & L. Hérmander [9] concernant la résolution du probléeme
de Cauchy caractéristique pour des équations d’onde du second ordre avec un potentiel régulier
du premier ordre. Le cadre géométrique de [9] était un espace-temps spatialement compact avec
une métrique réguliere. L'hypersurface sur laquelle les données initiales sont fixées était spatiale
ou caractéristique en chaque point et simplement de régularité Lipschitz. Nous affaiblissons les
hypotheses de régularité sur la métrique et le potentiel et nous obtenons des résultats analogues.
Le probleme de Cauchy pour une hypersurface spatiale est résolu dans le cas d’une métrique
Lipschitz et pour un potentiel dont les coefficients sont localement L°°, avec le méme espace de
solutions que dans le cas régulier. Nous résolvons également le probleme de Cauchy totalement
caractéristique dans un cadre tres légerement plus régulier : essentiellement, une métrique C' et
un potentiel dont les coefficients des termes du premier ordre sont continus et ceux des termes
d’ordre 0 sont localement L°°.

1 Introduction

In 1990, in a paper entitled “A remark on the characteristic Cauchy problem” [9], L. Hérmander
solved the global Cauchy problem for a class of wave equations on spatially compact space-times
with initial data hypersurfaces that were weakly spacelike (i.e. at almost every point either
null or spacelike) and merely Lipschitz. He assumed the metric on his space-time to be smooth
and the equations he was considering were first order perturbations of the covariant scalar wave
equation associated with the metric, the first order perturbation consisting of a differential
operator with smooth coefficients. At the end of his work, he remarked that all the estimates



depended only on the Lipschitz norm of the metric and the L° norms of the coefficients of
the first order terms (on a given large enough time interval on which the solution is studied) ;
he concluded that this was the proper generality of his theorem. However, he did not prove
that the result could be extended to the case of a Lipschitz metric and a first order differential
perturbation with L coefficients. To this day and to the author’s knowledge, this final remark
has remained unchecked.

In addition to the mathematical interest of this question, it is relevant for matters related to
scattering theory in general relativity in which the author is at present involved : namely, the
construction of geometrical versions of scattering theory in generic non-stationary space-times,
based on conformal techniques. Such ideas can be traced back to 1963, when R. Penrose put
forward in [12] the essential ideas of the resolution of the characteristic Cauchy problem for field
equations in relativity. These ideas were then used by F.G. Friedlander to give a conformal
construction of scattering theory for the wave equation on static space-times in [7, 8], respec-
tively in 1980 and 2001. In 1990, J.C. Baez, L.LE. Segal and Z.F. Zhou applied a similar idea to
nonlinear conformally invariant wave equations on flat space-time. On the same year and in the
same issue of the same journal, L. Hérmander produced his rigorous proof of the solution to the
characteristic Cauchy problem for wave equations on spatially compact space-times [9]. This is
fundamental for any conformal description of scattering and Héormander’s proof, based on energy
estimates, allows to work with minimum regularity solutions, which is the natural framework of
scattering theory. In 2004, L.J. Mason and the author [11] proposed a conformal construction
of a scattering operator for spin 1/2 and spin 1 massless fields on generic non stationary asymp-
totically simple space-times with smooth conformal infinity. This construction uses Penrose’s
ideas and a modification of Héormander’s proof that allows to establish the equivalence with a
standard analytic time-dependent scattering theory, defined in terms of classical wave operators.

The notion of asymptotic simplicity, on which [11] was strongly relating, was defined by
R. Penrose, as a simple geometric description of asymptotic flatness. For some time, this was
considered by many as an idealised model, because no known solution of the Einstein vacuum
equations, except Minkowski space-time, was asymptotically simple. The first examples of vac-
uum space-times that approached the asymptotically simple framework were the space-times of
D. Christodoulou and S. Klainerman [2], propagated from initial data close to Minkowski space.
These space-times are non-stationnary and only fail to be asymptotically simple because of a
small lack or regularity at null infinity. Since this work, other generically non-stationary vacuum
space-times have been constructed, by J. Corvino [5], P. Chrusciel and E. Delay [3, 4] and J.
Corvino and R.M. Schoen [6]. They are asymptotically simple with specifyable regularity at null
and timelike infinity, and diffeomorphic to Schwarzschild or Kerr spacetime in a neighbourhood
of spacelike infinity. Then, S. Klainerman and F. Nicolo [10] proved that for initial data that
are close to flat space-time and with stronger fall-off assumptions than in [2], the corresponding
global solution of the Einstein vacuum equations is asymptotically simple.

The regularity of conformal infinity encodes the fall-off of the physical metric ; the more
regular conformal infinity, the stronger the fall-off. So, working with less regularity of the
conformal metric at conformal infinity, means working with larger classes of physical metrics.
If in particular one wishes to extend the constructions of [11] to the space-times of [2], then
the characteristic Cauchy problem must be solved in frameworks that are only slightly more
regular than what L. Hérmander had in mind in his final remark in [9]. It is therefore quite
crucial to prove this remark. The present work is a step in this direction. The results of [9] are
extended to the regularity setting proposed by Hérmander for the standard Cauchy problem ;
we also treat the fully characteristic Cauchy problem (Goursat problem), for this we impose a
little more regularity, but we remain below the actual regularity of conformal infinity for the



space-times of [2]. The paper is organized as follows.

e In section 2, we describe the geometrical setting and give a summary of L. Hormander’s
result (theorem 1). His work deals with the Cauchy problem for initial data surfaces that
are allowed locally to be spacelike or null and thus solves the standard Cauchy problem as
well as the characteristic Cauchy problem.

e Section 3 contains the main results of this work. In subsection 3.1, theorem 2 solves the
Cauchy problem in the regularity setting proposed by L. Hormander. The surprising thing
is that the minimum regularity solutions in fact remain continuous in time with values in
H' instead of being only locally L> with values in H'. A corollary for equations that
are homogeneous of the second order is then obtained. In this case, we have access to
H? solutions for more regular data. Subsection 3.2 treats the fully characteristic Cauchy
problem. It uses crucially the corollary of section 3.1 to define a regularization of solutions
that has the strong convergence properties appropriate for obtaining the fundamental
energy estimates. In theorem 3, the well posedness is proved for a C! metric and coefficients
of lower order terms that are assumed to be continuous for the first order terms and Ls, for
the zero-order terms. The proof follows the essential structure of Hérmander’s proof, based
on two reciprocal energy estimates between some spacelike slice and the null hypersurface,
followed by the construction of one solution to the characteristic Cauchy problem. It turns
out that the theorem is in fact valid for a regularity setting intermediate between what
Hoérmander proposed and that of theorem 3 ; this is expressed in theorem 4.

e The proofs of the theorems are given in the last section.

For simplicity, we work with a scalar wave equation with real-valued unknown function.
However, the theorems are also valid for a wave equation with complex, tensor or spinor valued
unknown function (for spinor fields, provided the space-time admits a spin-structure).

2 Geometrical and functional framework and summary of Lars
Hormander’s result

The geometrical framework chosen by Hormander is as follows : X is a C* compact manifold
of dimension n > 1 and X = R; x X. For ¢t € R, we denote X; = {t} x X. We consider on X
a time dependent Riemannian metric g(t) assumed to be C*° on X. An immediate consequence
of this is

Property 1. There exist two continuous positive functions' Cy and Co on R such that, for a
giwen local smooth coordinate system on X, the matrizc G = (gag) satisfies, as a quadratic form
on R™ :

Ci(H)Id, < G(t,z) < Co(t)Id,, V(t,x) € X,
where Id,, denotes the n X n identity matrix.

We also define dv a fixed smooth density on X ; in local coordinates dv = ydx. We can
assume that dv is the volume measure induced by a smooth Riemannian metric h on X ; dtdv
is then the measure induced by the smooth Riemannian metric h = dt? + h on X. We denote
V and V the Levi-Civita connections induced respectively by h and h.

n [9], for simplicity, it is assumed that C; and C2 are constants. This is of course unimportant since one can
always restrict the study to a generic compact time interval [T, T.



We work with Sobolev spaces H* and H{é . defined on X and X for any p € R by local
identification with the corresponding function spaces on smooth open sets of R” and R"+!. We
only use explicit norms for g = 0 or 1 ; in fact we have natural norms on H*(X) and H*(X)

for any k € N :
k
e —Z/ (VPu, VPu) dv | (1)
p=0"%X

[ Z / vpu vpu dtdv (2)

where the same notation < .,. > refers to the inner product on tensors at a point induced by
h or h. The inner products associated to the norms (1) and (2) are denoted < .,. >px(x) and

< - ey On H'(X), we also define a norm |.||g1(x,) that is more closely related to the
metrlc g(t) :

el ) = /X (9% (t,2)0uul@) D) + Ju(a)[?) do(z) (3)

The H' norms (1) and (3) are equivalent for any ¢ € R and the equivalence is locally uniform in
t. Another type of function space we shall need to consider is W1>°(O) (resp. VVILOO((’))) where
O is an open set of X or X ; it is defined as the space of functions in L>®(0) (resp. L2 (0))
such that their gradient is also in L*°(O) (resp. L5.(O)).

On X, we consider a wave equation of the form

Ou+ Liu=0 (4)

where [J denotes the simplified d’Alembertian

0? 1 0 0
oz~ oz (W axﬁ) 5)
and L is a general first order differential operator

0 0
Ly == +b*— 6
1 BN + ppe +c (6)
whose coefficients b°, b® and ¢ are assumed to be C* functions on X. The hypersurface on which
the initial data are specified can be a spacelike Cauchy hypersurface for a standard Cauchy
problem, a light cone for a characteristic Cauchy problem (Goursat problem), or anything in
between. It is defined as follows

Y={lp(x),x); xe X}, » 1 X —R, (7)

where ¢ is simply assumed to be Lipschitz on X, to allow for singularities such as the vertex of
a light cone, and weakly spacelike, i.e.

9°P(p(), ) Baip(2)dpp(x) < 1 almost everywhere on X . (8)

Condition (8) has a meaning, since Lipschitz functions are differentiable almost everywhere, and
it simply says that 3 is allowed to be locally spacelike or null but not timelike.

We consider on X the density measure dvy, which is simply dv lifted to ¥ using parametriza-
tion (7). The hypersurface ¥ being merely Lipschitz, we can define the spaces H*(X) only for



|| < 1 ; these spaces are canonically isomorphic to the corresponding Sobolev spaces on X by
(7). On L?(X) and H'(X), we consider the norms [l 2=y and ||.||g1 (), naturally induced by
this isomorphism. We also define a norm ||. || Hi(mgyon H L(2) in the two following equivalent
manners : if the element ¢ of H(X) is considered as the lift on 3 of an element of H!(X), the
norm has the form

g = [ {10+ 9" ole).0)u()p0(a) } v 9)
and if 1 is defined as the trace on ¥ of some ¥ € Hﬁ’)/f()z),

The norms ||.|| 15,4y and [|.|| g1 (5 are of course equivalent. We shall also consider the foliation

{Zi}er
Ye={({t+e¢x),z);2 e X}, Lg=X. (11)

On each Y, we define the spaces H*(X;), —1 < pu < 1. These spaces are canonically isomorphic
to the corresponding spaces on % by parametrizations (7) and (11). We use this canonical
isomorphism to identify H*(%;) with H#(X). On H'(%;), in addition to the norm |||z (s
inherited from the previous identification, we can also consider a norm involving the restriction
to X4 of the metric g. Its definition is analogous to (9) and (10) : for vy € H'(X;) seen as the
lift on ¥; of an element of H!(X),

9 = [ {IVF 5% 0+ ola). ) dai(e)w(a) } dv (12)

and for ¢ defined as the trace on ¥; of some ¥ € H3/2(X),

loc
91 mp = [ {19+ 0% (0¥ + 000 ®) 0% + a0 f . (1)

These norms are equivalent, locally uniformly in time, with the H'(X) norm.

The well-posedness of the Cauchy problem for (4) in H(X) ® L?(X) is well-known : for any
initial data (ug,u1) € HY(X) @ L?(X), for any initial time s € R, (4) admits a unique solution
u in

F=C"(Re; H'(X))nC! (Ry; L*(X)) (14)
such that u(s) = ug and dyu(s) = uy. For u € F, we introduce the energy of u at time ¢ as the
norm of (u(t),Gu(t)) in H' & L? :

B(tw) = (O ey + 10O = [ {100d? + 9 0mudsi+ . (15)
t

If u € F is a solution of (4), it satisfies for all 7' > 0 the energy estimate
E(t,u) < E(s,u)ef1Tol)lt=sl vt g c [T T (16)

where K is a continuous positive function of T' > 0, the norms in W1*°(] — T, T[x X) of g and
g~ ! and the norms of the coefficients of Ly in L*>(] — T,T[xX). We denote by £ the space of



finite energy solutions of (4), i.e. the set of solutions of (4) in F. The energy estimate (16)
shows that for any t € R and for any T" > 0, the following are equivalent norms on & :

N(t) : ue & E(tu) (17)

and

lull 77 :=" sup N(7)(u). (18)
—T<r<T

The main result of [9] is the following :

Theorem 1. (Hérmander, 1990) We define on X the density measure
dyg = (1 — gaﬂﬁacp(?g(p) dvy, ,

which is positive where ¥ is spacelike and vanishes where ¥ is null, and the associated L? space
L2(3;dv?). The application

£ — HY D)o L*(%;d?)
u —  (uy, Owg)

(19)

which is well defined for smooth solutions, extends as an isomorphism. In particular, there
exist Ko(T,g,L1) and K3(T,g,L1), two positive continuous functions of T > 0, the norms in
Whee(] = T, T[xX) of g and g~* and the norms of the coefficients of Ly in L>®(] — T, T[xX),
such that for u € €, for T > 0 satisfying —T < min{p(z), z € X}, T > max{p(x), = € X},
we have

HTZUHLE < Ky(T,g,L1) ”“HfT (20)
and
[ull zp < K3(T, g, L1) [Ty ully 5 (21)
where we define
HTzUHiE = Hu‘Euifl(Z;g) + Hatule;(z;dug) '

Lars Hormander’s proof can be extended with minor modifications to the case where g is in
C?(X) and the coefficients of L; are in I/Vl(ljfo(f( ) : this guarantees the existence of “regular”
solutions living in HI%C(X' ) which is enough for proving the energy estimates ; the whole proof
can then be reproduced using such solutions, instead of the C*° solutions used in the smooth
case, to approach finite energy solutions. This however is not quite enough for meeting the
standards imposed by Hérmander in his final remark.

3 Main results

3.1 The Cauchy problem

We work on the same geometrical background but we now merely assume the following :

(H1) the metric g is in C°(X) N I/Vl})fO(X) (and hence satisfies Property 1), the coefficients of
Ly are in L (X).

loc



Remark 3.1. The reqularity of dv does not need to be lowered since the two operators O cor-
responding to two choices of dv : dvy = yidx, dvy = ~vodw, such that y2 —y1 € WH™(X),
differ only by a first order operator with bounded coefficients. Hence, the difference between two
choices of density is hidden in a black box : the operator Li. In fact, if we study the natural
covariant wave equation on X, this black boz already hides the difference between the simplified
d’Alembertian O defined in (5) and the covariant d’Alembertian associated with the Lorentzian
metric dt? — g :
0 —Dg =0} - %&x (I detg\%gaﬁﬁﬁ) :
| det g|2

Because of the lack of regularity of the coefficients of the equation, it is more natural to abandon
part of the continuity in time of the solutions. We give a first existence and uniqueness result

for solutions that are simply LY in time with values in H L(X). Strikingly enough, it is then

very easy to show that such solutions are in fact continuous with values in H*(X).

Theorem 2. We introduce the space
F =LY% (Re; HH(X)) NC* (Ry; LA(X)) .

Under the hypothesis (H1), for any (uo,u1) € H'(X) @ L*(X), for any s € R, equation (4) has

a unique solution u € F such that
Uy = U0, atU|t:s =Uuj.

Moreover any solution of (4) in F belongs to F. Therefore, we still denote by & the space of
solutions of (4) in F. The elements of £ satisfy energy estimate (16).

The next result states that when the operator L; is homogeneous of the first order and
exactly cancels the first order terms of the d’Alembertian, we can get more regular solutions.
This will in particular be crucial for the Goursat problem.

Corollary 3.1. For a metric g in Co(f()ﬁwlifo (X) (this guarantees in particular that g satisfies
Property 1), we consider the equation

Ot — g*P0,05u = 0 (22)

corresponding to (4) with
Li =710 (vgaﬁ) 95 -

Note that g and Ly then satisfy hypothesis (H1). As a consequence of theorem 2, for any
(ug,u1) € HY(X) ® L*(X), (22) admits in F a unique solution u such that

uj,_, =uo, Ouj,_, =ui,

and we have in fact u € F. Moreover, if (ug,u1) € H*(X)® H(X), then the solution u satisfies

2
ue ()C(R; H7(X)).
=0



3.2 The Goursat problem

We give an extension of theorem 1 for a metric g that is merely continuously differentiable on
X in the case where the hypersurface ¥ is fully characteristic. More precisely, we assume :

(H2) the metric g is in C'(X), the coefficients of the first order terms of L; are continuous
on X and the coefficients of the zero-order terms of Ly are in L% (X).

The hypersurface ¥ is still defined by (7) where ¢ : X — R is a Lipschitz function, but it is
now required to be fully null, that is

9°P(x, 0(2))datp(z)dsp(z) = 1 almost everywhere on X . (23)

Contrary to what one may think, this actually makes things slightly easier since the measure
dyg vanishes everywhere on > and therefore the trace of 0;u on ¥ is no longer relevant, only
the more easily controlled trace of u plays a part in the characteristic Cauchy problem. This
is what allows us to extend the results of theorem 1 to the case of a C! metric. We have the
following theorem :

Theorem 3. Under the assumptions (H2) and (23) the application

T, : € — HYY)

u = u|Z
is well defined and is an isomorphism.

The theorem is actually valid for slightly less regular metric and coefficients of the first order
terms. This becomes clear towards the end of the proof, in the only part where we really need
more than the minimum regularity setting proposed by Hormander. The arguments are detailed
in remark 4.2.

Theorem 4. The result of theorem 8 is still valid under the assumptions (23) and

(ﬁé) the metric g is in L. (Ry; CHX))NWE(Ry; CO(X)), the coefficients of the first order

loc loc
terms of Ly are in Ly (Re; C°(X)) and the coefficients of the zero-order terms of Ly are

loc
in LS (X).

The following additional result is implicit in the proof of theorem 3 :
Corollary 3.2. Let u € £, we define v as

v @ R — HYY),

t — ujy, -

Then v eC (Rt ; Hl(Z)). This can be expressed using the parametrization (11) as follows :

o(t,z) = ut + p(z),2), ve (R HY(X)) .



4 Proofs of the main results

4.1 Proof of theorem 2

We shall use the following notations : for —oo < t; < to < 400, Uy, t, =|t1,t2[ xX and for
T>0,Qp:= Z/{—T,T-

e First step : uniqueness. We show that the energy estimate (16) is valid for solutions
of (4) in F. We start by establishing an energy estimate for all smooth functions, not assumed
to satisfy (4), on X. For v € C%°(X), if we multiply (v + Liv by ;v and integrate on Qp for
T > 0 given, the regularity of v allows us to integrate by parts on {27 and to obtain

E(t,v) < E(s,v)+2/ |0wv| |Ov + Lyv| dtdv + K1 (T, g, L1) E(r,v)dr (24)
QT ]S,t[

where K1(T,g, L) is the continuous positive function of T > 0, the norms in W1>°(Qr) of

g and ¢! and the norms of the coefficients of L; in L>(27), appearing in (16). By density,
estimate (24) carries over to functions v in Hﬁ)c(X ), but it is not obvious that it remains valid

on F because, using a naive approximation, we cannot make sense either of the convergence of
the energy at times s and ¢ or of the convergence of the term containing the d’Alembertian.
However, we show that any u € £ can be approached by a sequence {ug}x of more regular
functions such that estimate (24) for uy gives, as k — 400, estimate (16) for u. There are three
constraints in the construction of the sequence {uy}y :

1. we must have E(t,ux) — E(t,u) at least for almost every ¢ ;

2. each uy, has to belong to H2 (X) so as to satisfy (24) ;

loc

3. Oug + Lyug must tend to zero at least weakly in L _(X) in order to obtain

/ ’atuk‘ \Duk —|—L1uk| dtdv — 0, as k — 4.
Qp

The first constraint suggests to regularize u in space only. The two other constraints will then
automatically be satisfied as well. In the following proposition, we prove the existence of such
a regularization in trivial topology, i.e. on Ry x R™. Then, we use this result locally on X to
construct the sequence {uy }.

Proposition 4.1. We consider on R™ a time dependent metric h(t) such that, for all t1, ta,
—00 < 1] < tg < 400,

h € CY(Ry x R™) N W (Jtq, to] xR™) | (25)
JA,B, 0< A< B < +o0; Ald, < h(t,z) < BId,,, Y(t,x) € [t1,t2] x R™, (26)
where h is identified with its matriz in cartesian coordinates. We introduce the operator
Op = 92 — 9a (h@ﬁaﬁ) .

Let

loc

we Ly (Ry; HY(R™)) nC! (Ry; L*(R™))

such that
Opw € L? (]tl,tg[ XRn) Vii,to; —oo <t <ty < 400.



If we consider on R™ a regularizing sequence (also called approzimate identity) defined in the
usual manner

p € C™®(R™) , suppp C B(0,1), p>0, / ple)de =1, pr(x) := k"p(kz) Yk € N,

n

then the sequence {wy}r defined by convolution of w with py over R™ :

wi(t,x) = (w(t) * pr) (x) ,
satisfies
(i) wr(t) — w(t) in HY(R™) for all t such that w(t) € H*(R") ;
(it) wi — w in LY (Ry; HY(R™)) NCY (Ry; LA(R™)) for all1 < p < +00 ;

(iii) the sequence {Opwy}, is bounded in LE (R x R™) ;
(iv) wy, € HE. (R x R") Vk € N*.
Proof of proposition 4.1.
(i) and (ii) are standard.
(iti) Since Opw € LY (R™!), we have

loc

(Opw) * pp — Opw in L, (R™) >~ L (Ry; L, (R™)) .

loc loc
Hence, (Opw) * pi, is bounded in this space. We consider
(Onw) * i~ O = (020 [(Bgw) + pi] + b (D) + (Bapr)]
— (ho‘ﬂﬁgw) * (Oapr) -
The first term is clearly bounded in leOC (R"*l) since
9ah®? € L™ (Jt1,12[xR™) for any — oo < t; <ty < +00, dgw € L} (Ry; L? (R™))

and therefore

(aahaﬁ) [(Bw) * pr] — (aahaﬁ) dgw in L2 (Ry; L2 (R™)) .
Now

{1P 1(@5w) * @api)) = (H7P05w) * (Dapr) } (. 2) (27)

- /Suppp {(h“ﬁ(t, z) — h*P(t,x — y)) Ipw(t,z —y) aapk(y)} dy.

Denoting this quantity Fj(t,x), we can estimate it as follows : for —oo < t; < ty < +o0,
denoting Q =|t1, to[xR", we have for (¢,x) € Q

1,,_ n
NGRS [ MY / 19wt =)l K Bap(hy)] dy
Oc,ﬁ su k

10



and putting xax(¥) = E"Xa(kY), Xa(y) = [Oap(y)|,

|Fk(ta $)| < Hh_luwl,oo(g) Z (|8ﬂw(t)| * Xoc,k) (CL‘) :
a,l

Using [|Xa,kllz1®n) = [[XallL1(®n), we obtain

1@l 2y < B o) D 10802 eny Xl geny
a’ﬁ

and therefore
1Fell 2y < C 10 H[yaseqy 1wl -

where C' depends only on p. This proves (iii).

(iv) We have w € C' (Ry; L*(R™)), hence, for each k € N*, wy, is in C* (Ry ;C*°(R™)). Besides,
we have proved that

Opwy, = Ofwg — da (haﬁ 3ﬁwk) € Lipe (R™) .
Also

wy € C(Ry;C°(R™)) and A € W (Jt1, to[ xR™) ¥ — 00 < t1 < tg < +00

entail
Ba (h“ﬁaﬁwk) € L2, (Ry; L2, (R™)) .
Therefore
Ofwg € L, (R™H1)
which proves (iv) and concludes the proof of proposition 4.1. ]

We now proceed to constructing the sequence {uy}r. We consider :

° {Qi}lgiSN a covering of X by open sets of trivial topology ;

° {ui}lgiSN a covering of X by open sets such that U c QO ;

o {Xi}lgigN a partition of unity associated with {U'}, i.e.

N
X' € C>®(X), suppy’' C U, 0< ' <1, inzlonX.

i=1
Putting v* = y'u, we clearly have v* € F and
v = x*0u — v~ 18, <Vg°‘ﬂ (85xi) u) — gaﬁ (8axi) (Opu) € L120C (f() .

For 1 <i < N, Q' is a trivial topology open subset of X ; it can therefore be identified, by
means of a global coordinate system, with a bounded open set €2* in R™. The metric Yl o CAD
t

(3

be extended as a function (¢, z) on Ry x R” satisfying (25) and (26). The functions v* and (v’

11



on X have their support in Ry x U? C Ry x Q' and can therefore be considered as functions on
R; x R™. Then, v’ and

Ogv' = ' + first order terms in L? (Rt L2 (Ql))

loc

satisfy the hypotheses of proposition 4.1. Hence, for each 1 < ¢ < N, we can construct the
sequence
v, =v *p, keN*

and it will satisfy properties (i)-(iv). In addition,
i s — 1 . n
suppv, C Ry x (U + B O,% in RxR

whence for k large enough, 0ok and v have their support in Ry x Q) and can be considered as
functions on X. In this manner, for a given k € N*, we obtain a sequence {uy}, > defined by

N
up = Z vy,
i=1
such that

ukGHIQOC(X),
ug(t) — u(t) in HY(X), Vt such that u(t) € HY(X),
up — win L (]th;Hl(X))UC1 (Rt;L2(X)) Vp,1<p<+4oo,

loc
Ouy, + Liug, bounded in L2 (X).

loc
Note that (31) is an easy consequence of property (7ii) for vF since

N

Oug + Liug — Z I:,ih’l)]ig
=1

L > (X) and these terms
converge in L2 (X) by (30). By (28), each uy, satisfies (24) : for all T' > 0, for all ¢, s € [T, T},

loc

is a sum of first or zero order derivatives of the v; with coefficients in L%,

E(t,ug) < E(s,u) + 2/ |O¢ug| |Oug, + Liug| dtdv + K1 (T, g, Ll)/ E(r,uk)dr.  (32)

Qr }S,t[

Properties (29) and (30) imply that for almost all s,t € [-T,T] (more precisely for all s,¢ such
that both u(s) and u(t) belong to H'(X))

E(t,ur) — E(t,u) and E(s,ug) — E(s,u).

Property (30) also entails the convergence of the last term of the inequality

E(r,u)dr — E(r,u)dr.
Is,t] Is,t]

Extracting a subsequence if necessary, (31) entails that Cluy, + Lyug, converges weakly in L2(Qr),
the limit being zero since, by (29) and using the fact that u is a solution of (4), Ouy + Ljug
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converges towards zero in D'(Q7), the space of distributions on Qp. Besides, dyuy converges
strongly towards d;u in L?(Qr), whence

/ |0y | |[Dug, + Liug| dtdv — 0.
Qp
Consequently, for all t,s € [T, T] such that u(t),u(s) € H'(X),
E(t,u) < E(s,u) + K1(T,g,L1) E(r,u)dr. (33)
Js:t]

This gives (16) for u in the following sense : if u(s) € H*(X), s € [T, T], then for almost all
te[-T,T),
E(t,u) < B(s,u)ef(TgL)lt=s],

The uniqueness of solutions to the Cauchy problem for (4) in F follows. O
e Second step : existence. Let (¢,7) € H'(X) ® L*(X), s € R, we wish to find u € F

such that
Ou+ Liu=0, U|t:82(;5, 8tu‘t:3:z/z. (34)

In order to use the well posedness of the Cauchy problem in the smooth case, we regularize the
metric and the coefficients of Lq. For k € N*, we define

(a) *g a time-dependent riemannian metric on X, kg € C°(X) ;

(b) Ly = 00, + 20, + e, WO, R, ke € cx(X) ;

such that :
kg — g in CO(X)HH&)C(X); (35)
kg bounded in WI});’"(X) ; (36)
ke — ¢
O — B0 5 in P (X) Vp; 1 <p < +oo; (37)
kba - ™
k0| ke ke bounded in LS (X) (38)

and there exist two positive continuous functions D and Dy such that
Vk € N*, V(t,z) € X, Di()Id, < Fgap(t,2) < Do(t)Id,, . (39)

Typically, such sequences are constructed using coordinate charts and, in each domain, convo-
lution by a regularizing sequence on Ry x R™ ; this is similar to what we did for constructing the
sequence uyg in the first step of the proof, but now, the regularizing sequence and the convolution
involve time as well as space variables.

For each k, we consider the equation

827) -1 8 k afB a'U k .
ﬁ—’}/ W('y(g )81-5>+ Lw-O. (40)

Theorem 1 tells us that (40) has a unique solution v € F such that vg(s) = ¢ and vk (s) = 9.
This solution satisfies the energy estimate

VT > |s|, Vt € [=T,T], Ep(t,vp) < Ex(s,vp,) 5100 Tlt=s], (41)
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where Ej, is the energy (15) defined using the metric ¥g instead of g. Ey(t,.), just like E(t,.),
is (uniformly in k and locally uniformly in time) equivalent to the norm in H'(X) @ L?(X).
Besides, (36) and (38) imply that { K1 (T, %, kLl)}k is bounded in R*. The upshot of all this is
that {vy}x is bounded in F. Hence, for T > |s| fixed, extracting a subsequence if necessary, we
can assume the convergence of {v} in the following spaces (we call u the common limit) :

v — uwin HY(Qr) —w, (42)
v — win H*(Qp), Vp <1, (43)

“

where “—w” denotes the weak topology. Hence, by standard trace theorems

vp — win C ([-T,T]; L*(X)) (44)
and by the Banach-Alaoglou theorem

vp —uin L (] = T,T[; HY(X)) — w — *, (45)
v, — Opuin L™ (| = T,T[; L*(X)) —w — *, (46)

where “—w —%” denotes the weak star topology. Now the convergences (42), (35) and (37) imply
OPv, — OPu
Y104 (v (kgaﬁ) pu) — v '0a ('ygaﬁagu) in D'(Qr),
kLo, — Liu

whereby u satisfies equation (4) in the sense of distributions on Q7. Using uniqueness, we have
thus constructed a solution u of (4) defined on X and that belongs to F. Indeed, we know that

loc

ue LY (Ry; HY(X)) , O e L, (Ry; L2(X)) . (47)
Since g € Wlff()?) and the coefficients of L; are in L2 (X), (4) entails
02u =10, (ygaﬂaﬁu) — Lyue LS, (Ry; HY(X)) . (48)
Using J.-L. Lions’s principle of intermediate derivatives, (47) and (48) imply
dyu € C (Ry; L* (X))

and therefore u € F. The last things to check are the two initial data conditions. The initial
value of u is easy ; using (44)

vp(s) = ¢ — u(s) in L*(X)
whence u(s) = ¢. The trace of Jyu at t = s requires more care. We write
0% (u—wvy) =710, (’y [kgaﬁ@;vk — gaﬁﬁﬁuD + *Livp — L.

(36), (38) and (42) imply the boundedness in L*(] — T, T[; H~1(X)) of 8? (u — v},). This allows
us, first, to write for ¢ € [T, T}, to fixed in [-T,T],

Opu(t) — Op(t) = dpulto) — vk (to) + o 8t2 (u—vg) (1)dr, (49)
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second, extracting another subsequence if necessary, to assume
O (u—vp) — 0in L* (| =T, T[; H (X)) —w.

This last convergence gives

| [83 (u—vg) (1)dT — 0 in L? (] fT,T[;H_l(X)) —w.

to,t
Since (42) implies

vy — O in L2(Qr) —w — L*( - T,T[; H (X)) —w,
we deduce from (49) that

Ay (to) — Qyu(ty) in HY(X) —w, Vit € [-T,T).
In particular, for ¢ty = s,
U = Qyup(s) — Opu(s) in HHX) —w

which gives us dyu(s) = ¥ and concludes the second part of the proof of theorem 2. O

e Third step : continuity in time of the solutions. We consider u the unique solution
in F of the Cauchy problem (34), T' > |s| and v, the sequence constructed in the second step of
the proof. For any fixed ¢ in [T, T, the energy estimate (41) implies that {vg(¢)}x is bounded
in H'(X). Hence, extracting a subsequence if necessary, we can assume that v(t) converges
weakly in H!(X). This together with the strong convergence (44) guarantees that u(t) belongs
to HY(X). The construction of the sequence vj, can be made for any fixed T > |s|. It therefore
turns out that

u(t) € HY(X) Vt €R

and hence, the energy estimate (33) is valid for all ¢, s. This implies in particular that for any
solution u of (4) in F, the energy E(t,u) is continuous in time. Besides, it is easy to show that

ueF=uel (Re; H(X)—w). (50)

The continuity of the energy therefore entails the strong continuity of v in time with values in
H'(X), which proves u € F. We now prove (50). Let v € F and w € H}(X). We put for t € R

f(t) = (u(t), w) g xy -

Given ty € R we show the continuity of f at tg. Let ¢, — to and {wg}r a sequence in C*>(X)
converging towards w in H'(X). For each k, using v € C(Ry; L?(X)), we have

(0(ta) = 0(t0), i) g1 x) = (0(t) = v(to)s (1= Ap) wi) oy — 0, 1 — 40,

where Ay, = 7710, ('yho‘ﬁ aﬂ) is the Laplacian associated with the metric A on X, introduced in
section 2 to define the H! norm on X, and to which the measure dv is associated. We write

(v(tn) = v(to), w) g1 (x) = (v(tn) = v(to), w — W) g (x) + (V(En) — v(t0), Wk) g1 (x) -

Consider £ > 0. Using the fact that v € L{° (Ry; H! (X)), we choose k large enough so that for
all n

[ 0(tn) — v(t0),w — i) s 30| < /2.

then, for this value of k, we choose n large enough so that

‘(U(tn) - U(to),wle(X)‘ <g/2.

This proves the continuity of f(¢) and concludes the proof of theorem 2. O]
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4.2 Proof of corollary 3.1

First, we write (22) as a special case of (4) :
OPu — g*P9,05u = Ou + 719, (7ga6> dgu=0.

Since g, g7 € VV&JCOO()N( ), the coefficients of the first order operator clearly belong to Lfg’c(f( )
and we are in the framework of theorem 2. To check that we can get more regular solutions, we
simply apply a partial derivation to (22) :

O (93u = 97700090 ) = (87 = 9°0a05) B — (9,9°") Dalgu.

We can therefore write the following system of equations :

(0F — g‘w@a@g) u = 0
(32 - gaﬁaaag) Oyu = (8Mgaﬁ) O0aOpu, p=1,..,n.

This system is of the form
(af - gaﬂaaaﬁ) U=1LU, U="(udu,.. o), (51)

where L is a first order differential operator whose coefficients belong to Lﬁfc(X ) since the

metric g is in VVI%)(?O (X). By theorem 2 (in the case where the unknown function is a vector
field), the system (51) admits a well-posed Cauchy problem in F and the solutions belong to F.
This guarantees the additional regularity of solutions of (22) for data in H2 @ H' and concludes
the proof of corollary 3.1. O
4.3 Proof of theorem 3.

e Inequalities (20) and (21). To prove these inequalities with our regularity assumptions,
we define a regularization of the solution u by functions uj in Hf)c()? ) that satisfy estimates of
type (20)-(21), with constants uniform in k, and that converge towards u strongly in H'(X;)
for all ¢ and in H'(X). This makes a crucial use of corollary 3.1.

We write equation (4) as follows

Ot — g*P0,05u + Liu =0, (52)

where

Li ==y (00 (19°7) ) 95 + L1 = °0; + 005 + 4,
P =0, 5" =17 (0a (79°7) ) + 07, g =c.

The coefficients of L, satisfy

P, 07 eC(X), g€ Li(X).

We define an approximation of equation (52) in which only the coefficients of L, are regularized :

02u — g*P0,0pu + Liu = 0, L} = pho, + pgaﬁ + 4k, (53)

16



where the coefficients of L¥ satisfy

P, P, ak € CP(X), (54)

P — % in C(X), pf — p” in C(X), (55)
g — qin L (X), V1 <p< +oo, (56)

qr, bounded in L=(] — T, T[xX) VT > 0. (57)

Let (ug,u1) € HY(X) @ L?(X). We consider u € F the solution of (52) such that u(0) = ug and
Opu(0) = u1. We also consider some sequences {uf}; and {u}};, of smooth functions on X such
that

uf — up in HY(X) and uf — u; in L3(X). (58)

Let uj, € H2 (X) the solution in F of (53) such that u(0) = uf and dyuy,(0) = uf. For each
k, uy, satisfies estimates of type (20) and (21) uniformly in k, more precisely there exists C' > 0
such that, for all k& :

2
o) 9

) < Ol

2
oo 5= € (o, + 1]

2 2
[, *
H(X) L2(X

2
[ (60)

In order to establish (20) and (21) for u, we only need to prove that us converges towards u in
H'(X), since

2 2
oy + 4
H1(X) £2(x)

— lwol 3 ey + N[220 = E(0,u) as k — +oo.

We will use the following proposition.
Proposition 4.2. We consider the equation

v — g%+ Lv = f (61)
where L is a first order differential operator with smooth coefficients on X and the source f
belongs to L2 (X).

1. We consider T > 0 and Qp =] — T, T[xX, there exists a continuous positive function
C1(T,g,L) of T, the norms of g and g~! in W1>°(Qr) and the norms of the coefficients
of L in L*(Qr), such that, for any solution v of (61) in F and for all t,s € [-T,T] :

B(t,0) < Co(T,9, L) (B(s,0) + | f13sg s 220y ) (62)

2. We now consider T > max{| min |, |max|}. There exist continuous positive functions
Co(T,g,L), C3(T,g,L, f) of T, the norms of g and g~ in WL°(Qr) and the norms of
the coefficients of L in L(Qr), such that, for any solution v of (61) in HZ (X) and for
any s € [T, T), we have? :

2
Hv\g HH1(2) < CQ<T797 L) (E(S,?}) + HfHLl(]fT,T[; LQ(X))> ) (63)
2
E(Sv U) < 03(T7 g, L) <HU|2 HHl(Z) + HfHLZ(QT)> : (64)
2The existence of such solutions is not guaranteed in the general case because of the low regularity of f, but we

will use this proposition in cases where we know such solutions, namely the functions uy or rather the difference
ug — u; between two such solutions ; see equation (67).
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Remark 4.1. Estimate (64) will not be useful to us, we have given it for completeness.
Proof.

1. Proof of (62). We have obtained in the proof of theorem 2 that estimate (16) is valid
for solutions of (4) in F under the assumption (H1). If we consider some source f in
Ll (R;; L*(X)), we still have existence and uniqueness in F of the solutions of

v+ Liv=f

and these solutions are given in terms of their initial data at time s by the Duhamel

formula? ( 82:’152) > =U(t,s) ( 81:1(12) > +/:Z/l(t, 7) ( f(OT) >dT? )

where U(t, s) denotes the propagator for equation (4), that to initial data ‘(u(s), du(s)),
associates the solution at time ¢ : *(u(t), du(t)). Equation (61) in the source-free case can
be written as
Ov+~~t <8a (79'1’8)) Ogv+ Lv =0

and therefore the solutions satisfy estimate (16) with a bound eX1(T:9:Dlt=sl where K, is
a continuous positive function of 7', the norms of g and ¢! in W1°(] — T, T[x X) and
the norms of the coefficients of L in L>°(] — T, T[x X). This together with (65) entail (62)
with Cy = e*TK1 for solutions in F of equation (61) with a source f € Li (Ry; L*(X)).

2. Proof of (63). The fact that we are dealing with a solution that is locally H? allows us to
use the same type of integrations by parts as Lars Hormander. For v € HI%C(X ) solution
of (61), we write

0 = 20w (afv — g*P02 50+ Lv — f)
= O [(8tv)2 + gaﬁaavagv + 122] — 27719, ['ygaﬁatvagv}
+20,wLv 4 27710, <’yg“ﬁ> OOy — (8tg°‘5) Oav0gv — 200w — 2f0w (66)

Integrating (66) on the domain Q. = {-T <t < p(x)} for the measure dtdv = vydtdz, we
obtain

0 = / ((8,511)2 + g*P0,v05v + 02) dy, — /
2

((8,511)2 + g*P 0,000 + v2> dv
b's

-T

—i—/ 29aﬂ8tv8ag08ﬁvdyz
b
+/ (28tvLU + 27_186, (’ygo‘ﬁ) O0yv0dgv
Qr
— (8tgaﬁ> Oqv03v — 2004V — 2f8tv) dtdv .
The first three terms give (using the fact that ¥ is totally null)

—E(=T,v) + / (Op)* v + /

> >
=—E(-T,v) + Hv|Z

(gaﬁ (0av + 0ap0sv) (Ogv + Ogpdsv) + U2) dvy,

2
1)

3This is established by a standard fixed point argument.
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and the other terms, thanks to the assumptions on g and the coefficients of L, can be
estimated by

T
C(T,g,L)/ E(t,v)dt + 2/ |O¢v f| dtdv
T -

T

T
<C(T,9.L) /TE(t’ v)dt + HatUH%OO(]—T,T[; 2x) + Hf”%l(]—T,T[; L%(X))

T
< C(T,g, L) / B(to)dt+ sup E(t0) + 1F12 g rat: 1o -
-7 te]-T,T|

where C' has the required continuity properties. Estimate (62) then gives (63).

3. Proof of (64). For the converse inequality, for miny <t < T, we integrate (66) on the
domain Q) = {¢(x) < s <t}, i.e. the set of points of X situated in the future of ¥ and
in the past of X;. Following Hérmander, we put

Boltoo) = [ ((@fta)? + 97t 0)u0(t, 0)050(0,2) + v(t.)?) dor
p(x)<t
We obtain

0 = —/ ((8tv)2 + gaﬁaavaﬁv + UQ) dvy + Ep(t,0)
aloNs
_ / 298 000 pgud,,
N0t

+/ (28tva + 29719, (vgaﬁ) O0ywdgv
of
— (&ggo‘ﬁ) O0av0gv — 2004V — 2f8tv) dtdv .
The first three terms give
2
Eq(t,v) = H”\zHHl(Emﬂj)

and the remainder can be estimated by
¢
c(T,g, L)/ E,(s,v)ds +/ | f2|dsdv,
-T QF

where C has the appropriate continuous dependence on T, g, ¢~' and L. Gronwall’s
inequality entails for maxp <t < T

B(t,v) < CT.0, D) ([0l + 11122009 ) -

where C' again has the required continuity properties. Eventually, estimate (62) gives (64).

This concludes the proof of proposition 4.2. O
Let us now consider, for k € N, the solution uy of (53) associated with the initial data u'{j , ub
defined above. Using standard energy estimates of type (16), we see that for all T' > 0, ||ug|| 71

is bounded uniformly in k. Now consider the equation satisfied by uy — u;, for k,l € N :

02 (up, — ) — 9?00 (ux — w) + L (up — w)) = (ill - E’f) . (67)
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Let T > 0, estimate (62) and the hypotheses on I:’f give the existence of a constant C' > 0,
independent of k,[ and of t € [T, T] such that, for all ¢t € [-T,T],

2
k l 7l Tk
— i —L) ‘
“ u1HL2(X)+H< 1751

et < (|-, |

2
L (-T,T(; LQ(X))) '
Since ) )

(Lll — L'f) w = (p§ — pbh) 0w + (P} — pf)Oatw + (g — @)wi

using (55), the boundedness of {u;}; in CO([-T,T]; HY(X))NCY[-T,T]; L*(X)), a Sobolev
embedding H*(X) — LP1(X) with p; > 2 and (56) for p = 2p1/(p1 — 2) we see that {uy}x
converges in C ([—T, 7], Hl(X)) nct ([—T, 7], L2(X)). Allowing k to tend to +o00 in equation
(53), we see that the limit of uy, is the solution u of (4) associated with the data (ug,u1) at t =0
(this uses the convergence just established as well as (55), (56) and (58)). This convergence and
inequality (63) for up —u; then give that the restriction of ux to ¥ convergences strongly in H'(X)

(here again we need to use the convergence of (f/ll — i’f) w; towards 0in L' (] — T, T, L*(X))).
Moreover, using once again the convergence of uy, in CO([-T,T]; HY(X))NCY([-T,T]; L*(X))
and standard trace theorems, we see that ug,, converges to v, in L?(¥). By uniqueness it
follows that ug,, converges to u),, in H'(X). This entails inequalities (20) and (21) for .

Remark 4.2. It is in this part of the proof that we require a bit more reqularity on the metric
and the coefficients of the first order terms than in Hormander’s proposed setting, since we need

the convergence of <I:ll — i’f) w towards 0 in L' (] = T,T[, L*(X)) as k,l — +oco. Note that

all we need to guarantee this convergence is the convergence of pg towards p° and of Py towards
p® in Li (Ry; C%(X)) and of qi towards q in Li (R;; LP(X)) for all p < oco. This is true

loc loc

as soon as g, p° and p® belong to L2 (Ry; C°(X)) and q € Lis.(X). All the rest of the proof

is valid for a Lipschitz metric and coefficients of L in L{S.(X). Remembering that p° and p®
contain first order derivatives of the metric, this remark entails theorem 4.

This shows that under hypothesis (H2), the operator T, that to a solution u of (4) in &£
associates the trace of the solution u on X (well defined since the solution is in F < HL (X)), is
a one-to-one bounded linear operator from £ to H!(X). It remains to establish the surjectivity.

e T, is surjective. Let v € H!(X), we prove that there exists u € &£ such that v = Tyu.
To do so, we adopt the same regularization procedure as in the second step of the proof of
theorem 2, i.e. we consider {¥g}; and {*L;} defined by (a) and (b) and satisfying (35)-(39).
We introduce for each k a regularized equation to which we can apply theorem 1. Equation (40)
will not do because we cannot guarantee that ¥ is weakly spacelike for *g. In order to make up
for this, all we need to do is slow down the propagation speed for (40). We consider a sequence

{M\}r, ®A — 1 as k — 400, 0 < *A < 1, such that
Yk, AR (2, 0(2)) dap(x)dpp(z) < 1 almost everywhere on X .

We have automatically that { *A=!#g}, satisfies (35), (36) and (39). For each k, we define the
regularized equation

321) v —1 3 k o8 av k _
oz~ M axa(’y(g )amﬂ>+ Liw=0. (68)

That is to say, we have slowed down the propagation speed so that ¥ is now totally spacelike for
each equation (68) (i.e. for each k). We denote by uy, the unique solution of (68) in F such that
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(ur), = v, (Orug), = 0 (the existence and uniqueness of such solutions is given by theorem 1).
For each k, using theorem 1, we have an energy estimate (21) for solutions in F of equation (68).
Using the properties of the regularized metric ¥y and operator *L;, among which the equivalence
(uniform in k& and locally uniform in ¢) between the energy (15) induced by g and that induced
by MA\~1%g, we obtain that {ug} is bounded in C([-T,T], H'(X)) NCY([-T,T], L*(X)) for
any 7' > max{|min |, |max¢|}. The rest of the proof follows [9] with elements of the proof
of theorem 2 to deal with the regularized metric and operator *L;. Extracting a subsequence if
necessary, we can conclude that u; converges in the following spaces

HY () -T,T[xX) —w, H(] = T,T[xX) forall s <1, L>®( = T,T[; H' (X)) —w — *,

towards a function u, dyuy converges towards dyu in L>¥(] — T,T[; L*(X)) — w — *. The
convergences of ¥y, *L, and wy allow us to interpret, as in the existence part of the proof of
theorem 2, the convergence of each term of equation (68) in a common distribution space, hence
u satisfies equation (4) in the sense of distributions. Following again the proof of theorem
2, we show that u belongs to F and therefore to F. Moreover, the strong convergence in
H*(] —T,T[xX) for all s <1 entails the convergence in L?(X) of the trace of uj on % towards
the trace of u on 3. Hence, u|, = v. This concludes the proof of theorem 3. 0
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