
J. Math Pures et Appliquées, 81 (2002), 9, p. 885–914

A nonlinear Klein-Gordon equation on
Kerr metrics

Jean-Philippe NICOLAS
M.A.B., UMR CNRS no 5466, Institut de Mathématiques de Bordeaux,
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Abstract

We consider the non linear Klein-Gordon equation �u + m2u + λ|u|2u = 0, with
λ ≥ 0, outside a Kerr black hole. We solve the global Cauchy problem for large data with
minimum regularity. Then, using a Penrose compactification, we prove, in the massless
case, the existence of smooth asymptotic profiles and Sommerfeld radiation conditions, at
the horizon and at null infinity, for smooth solutions.

Résumé

Nous considérons l’équation de Klein-Gordon non linéaire �u + m2u + λ|u|2u = 0,
avec λ ≥ 0, à l’extérieur d’un trou noir de Kerr. Nous résolvons le problème de Cauchy
global pour des données initiales grandes et de régularité minimale. Ensuite, à l’aide d’une
compactification de Penrose, nous établissons dans le cas sans masse l’existence de profils
asymptotiques réguliers et de conditions de radiation de type Sommerfeld, à l’horizon du
trou noir et à l’infini isotrope, pour les solutions régulières.

1 Introduction

Schwarzschild and Kerr metrics are the simplest known examples of non flat solutions of
the Einstein vaccum equations to be “physically relevant” in that they contain energy.

The Schwarzschild solution is the simplest of the two ; it describes the space-time
geometry of a universe containing nothing but a static spherically symmetric uncharged
black hole. Linear fields outside spherical black holes have been studied intensively over
the past ten years (see A. Bachelot [1, 2], A. Bachelot and A. Motet-Bachelot [6], J.
Dimock [11], J. Dimock and B. Kay [12], W.M. Jin [17], F. Melnyk [19] and the author
[22]-[24]). The mechanisms of time dependent scattering are now well understood in many
cases and we even have a clear interpretation of the Hawking effect for a spherically
symmetric gravitational collapse (see A. Bachelot [3]-[5]). Much less is known about non
linear fields on the Schwarzschild geometry : the non linear Dirac equation, Yang-Mills
fields and non linear Klein-Gordon fields were studied respectively by A. Motet-Bachelot
[20], W.T. Shu [28] and the author [21]. No complete scattering theory has to this day
been developed for such equations ; the required Strichartz estimates are still lacking on
this curved background.

1



The geometry of Kerr’s space-time is much more complicated than that of Schwarz-
schild’s space-time of which it is a generalization, but it is also richer and physically more
realistic. Slow Kerr metrics are a description of a space-time containing only an uncharged
rotating black hole. Leaving aside the questions related to the interior of the black hole
(the instability of the Cauchy horizon, the singularity and the time machine in block III),
the analysis of field equations outside the black hole faces an essential difficulty : this part
of space-time, in contrast with the Schwarzschild exterior, is not stationary ; the effects
of rotation become extreme in a toroidal region called the ergosphere, surrounding the
horizon, where it is impossible for any material body to remain at rest in the perception
of an observer static at infinity. The only Killing vector field to be timelike at infinity is
timelike everywhere outside the black hole except inside the ergosphere where it becomes
spacelike. For fields of half-integral spin, which possess a conserved current inducing a
positive-definite inner product on each spacelike slice, independently of the existence of
timelike Killing vector fields, one would not expect this to represent a serious difficulty.
For Klein-Gordon or Maxwell’s equations however, the absence of globally defined timelike
Killing vector field implies the non existence of positive-definite conserved quantities. This
is what allows the phenomenon of super-radiance (an analogue at the level of fields of the
Penrose process for particles) by which a scalar or electromagnetic field can extract energy
from the ergosphere. Because of this difficulty and of the complexity of the geometry,
analytic studies of field equations on Kerr metrics have been scarse since the publication
of S. Chandrasekhar’s work [8] : the existence of smooth solutions to the Dirac and Maxwell
systems was proved by A. De Vries [9, 10] ; recently, the author solved the Cauchy problem
for Dirac fields in Sobolev and weighted Sobolev spaces using a 3+1 decomposition of the
geometry [24] and some results on the timelike asymptotic behaviour of Dirac fields have
been obtained by J. Finster, N. Kamran, J. Smoller and S.-T. Yau [13] ; the only time-
dependent scattering construction known to this day on such backgrounds was obtained
by D. Häfner for the non super-radiant modes of Klein-Gordon fields [15].

A complete understanding of super-radiance such as could be obtained through a time-
dependent scattering theory for Klein-Gordon or Maxwell’s equations seems yet remote. In
the present contribution, we propose a first study of the non linear Klein-Gordon equation

�gu+m2u+ λ|u|2u = 0 , λ ≥ 0 , (1)

outside a slow Kerr black hole and observe that super-radiance is no obstacle to control-
ling the non linearity locally uniformly in time or asymptotically along null rays. More
precisely, we obtain two types of results :

• The well-posedness of the global Cauchy problem for large weakly regular initial data.
The proof is similar to that of F. Cagnac and Y. Choquet-Bruhat [7] who solved the
global Cauchy problem for the above equation on globally hyperbolic space-times
with uniformly timelike time coordinate curves. This last hypothesis is not satisfied
near the horizon in black hole space-times. An earlier work by the author [21]
extended the results of [7] to the space-time outside a spherical black hole and we
now obtain analogous theorems for a Kerr black hole. The fundamental geometrical
tool is the 3+1 (or ADM) decomposition of the exterior ; this is sometimes referred
to as the point of view of locally non rotating observers and was explained in details
in [24]. We obtain a description of the exterior of the black hole as a space-time
(M, g) with

M = Rt × Σ , Σ ≃ R
3 \ B̄(0, 1) , g = N2dt2 − h(t) ,
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the lapse function N and the spacelike metric h being smooth and satisfying

– N → 0 at the horizon (the boundary of Σ) and N → 1 at infinity ;

– h(t) is equivalent to the euclician metric on the exterior of the unit ball in R
3,

the equivalence being uniform in space and locally uniform in time.

This allows us to formulate (1) as an evolution equation with a natural Hilbert space
framework. The Hilbert norm is not a conserved quantity for the linear evolution
but is easily controlled by an energy estimate ; this solves the linear Cauchy problem
for finite energy solutions. The flat Sobolev embedding H1 →֒ L6 gives the required
control on the non linear term and global existence then follows from an energy
estimate.

• In the massless case, we study the asymptotic behaviour of smooth solutions using
R. Penrose’s technique of conformal compactification (see for example [26]). We
obtain the existence of smooth asymptotic profiles at the horizon and at null infinity
(denoted I). It is also shown that solutions satisfy radiation conditions of Sommer-
feld type asymptotically : the conditions obtained at the horizon differ from those
at infinity by a rotation imposed on the field, the rotation speed being exactly that
of the horizon as observed from infinity.

The results obtained here extend those of [21] to Kerr geometry but also improve their
precision : the asymptotic profiles at null infinity in [21] were constructed as functions
of very low regularity ; the description of null infinity adopted here is based on a better
choice of coordinates (inspired by R. Penrose’s treatment of the Schwarzschild null infinity
in [26] and [27] vol. II) and allows us to show that the profiles are C∞ functions on I.

The paper is organized as follows. In section 2, we recall briefly the principles of the
3 + 1 decomposition of the exterior of the black hole, then we use this decomposition to
express equation (1) as an evolution equation with an elliptic spacelike part, thus ensuring
the existence of a natural Hilbert space in which finite energy solutions take their values.
Section 3 contains the global existence and uniqueness theorems for the linear and non
linear evolutions ; both smooth and minimum regularity solutions are considered. Finally,
in section 4, we explain the Penrose compactification of the exterior of a Kerr black
hole and use it to describe, in terms of asymptotic profiles and radiation conditions, the
behaviour at the horizon and at null infinity of smooth solutions to the massless equation.

Notations : some of our equations will be expressed using the abstract index for-
malism of R. Penrose and W. Rindler [27]. Abstract tensor indices are denoted by light
face lower case latin letters ; they are a notational device for keeping track of the nature
of objects in the course of calculations, they do not imply any reference to a coordinate
basis, all expressions and calculations involving them are perfectly intrinsic. For example,
on a space-time (M, g), gab will refer to the space-time metric as an intrinsic symmet-

ric tensor field of valence

[

0
2

]

, i.e. a section of T∗M ⊙ T∗M and gab will refer to the

inverse metric as an intrinsic symmetric tensor field of valence

[

2
0

]

, i.e. a section of

TM⊙ TM (where ⊙ denotes the symmetric tensor product, TM the tangent bundle to
our space-time manifold M and T∗M its cotangent bundle). Concrete indices defining
components in reference to a basis are represented by bold face lower case latin letters and
take their values in {0, 1, 2, 3}. Lower case greek letters will be used here only for denoting
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spacelike concrete indices in the framework of the 3 + 1 decomposition. They take their
values in {1, 2, 3}. We adopt the Einstein convention for indices appearing twice (once up,
once down) in the same term : for abstract indices, the index is considered as contracted,
signifying the action of a 1-form on a vector ; for concrete indices, the sum is taken over
the possible values of the index (from 0 to 3 for latin letters, from 1 to 3 for greek letters).

Given a smooth manifold M, we denote by C∞
0 (M) the space of smooth functions

compactly supported on M. For a measure µ on M, the space Lp on M associated with
the measure µ will be denoted Lp (M ; dµ), 1 ≤ p ≤ +∞.

2 The 3 + 1 decomposition of the geometry and the equa-

tion

A space-time containing nothing but a rotating uncharged black hole is described by the
Kerr metric. In Boyer-Lindquist coordinates on Rt × Rr × S2

ω, it takes the form

g =

(

1 −
2Mr

ρ2

)

dt2 +
4aMr sin2 θ

ρ2
dtdϕ−

ρ2

∆
dr2 − ρ2dθ2 −

σ2

ρ2
sin2 θ dϕ2, (2)

ρ2 = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 , σ2 =
(

r2 + a2
)

ρ2 + 2Mra2 sin2 θ ,

where M is the mass of the black hole and a is its angular momentum per unit mass. The
whole space-time has only one singularity : the set of points {ρ2 = 0} (that is to say the
equatorial ring of the {r = 0} sphere : {r = 0 , θ = π/2}), where the curvature blows up.
The spheres where ∆ vanishes, called horizons, are merely coordinate singularities. There
are three types of Kerr space-times (only two of which contain a black hole) depending on
the respective importance of M and a :

• Slow Kerr space-time for 0 < |a| < M . ∆ has two real roots

0 < r− = M −
√

M2 − a2 < M < r+ = M +
√

M2 − a2 < 2M, (3)

so the space-time has two horizons, the spheres {r = r−} and {r = r+}, on either
side of {r = M}. The case a = 0 reduces to Schwarzschild’s space-time.

• Extreme Kerr space-time for |a| = M . M is then the double root of ∆ and the
sphere {r = M} is the only horizon.

• Fast Kerr space-time for |a| > M . ∆ has no real root and the space-time has
no horizon. There is no black hole in this case ; the ring singularity is a naked
singularity.

We only consider slow Kerr metrics ; they are usually considered as the generic description
of a space-time containing simply a rotating uncharged black hole, since the extreme case
is believed to be unstable. The two horizons separate space-time into three connected
components called Boyer-Lindquist blocks: block I, denoted here BI , is the exterior of the
black hole {r > r+} ; block II, {r− < r < r+}, is a dynamic region situated beyond the
outer horizon and where the inertial frames are dragged towards the inner horizon ; block
III, {r < r−}, is the part of space-time located beyond the inner horizon, it contains the
ring singularity and a time machine called Carter’s time machine.
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We study the propagation in block I, i.e. outside the black hole, of solutions to the
non linear Klein-Gordon equation

�gu+m2u+ λ|u|2u = 0 , λ ≥ 0 ,m ≥ 0 . (4)

We first give (in subsection 2.1) a brief description of block I and equation (4) using
Boyer-Lindquist coordinates. Then, following [24], we perform (in subsection 2.2) a 3 + 1
decomposition of the geometry and of the equation ; this gives us a natural Hilbert space
framework for solving the global Cauchy problem for (4) in block I.

2.1 The ergosphere and super-radiance

The exterior of the black hole, like any Boyer-Lindquist block, is not stationary. The only
(modulo multiplication by a constant) Killing vector field globally defined in block I and
that is timelike for r large enough is ∂/∂t. This vector field, however, is not timelike
everywhere in block I. There is a toroidal region E , called the ergosphere, surrounding the
horizon, where ∂/∂t is spacelike ; E is defined by gtt < 0 and r > r+, i.e.

E =
{

(t, r, θ, ϕ) ; r+ < r < M +
√

M2 − a2 cos2 θ
}

.

Inside E , the effects of rotation are extreme and the quantity aϕ is strictly increasing along
any non spacelike future oriented curve.

Though ∂/∂t is not timelike everywhere in block I, the function t of the Boyer-Lindquist
coordinates is indeed a time function globally defined outside the black hole : this means
that the level hypersurfaces Σt of t are spacelike Cauchy hypersurfaces and ∇at is a timelike
future oriented vector field in block I. Hence, it makes sense to study field equations
outside the black hole as evolution equations on Rt ×Σ, Σ =]r+,+∞[×S2

ω, using t as time
parameter.

The expression of the d’Alembertian �g in Boyer-Lindquist coordinates can be calcu-
lated using the formula

�g =
1

|g|1/2

∂

∂xa

(

|g|1/2gab
∂

∂xb

)

where |g| denotes |det g|. We obtain

�g =
σ2

∆ρ2

∂2

∂t2
+

4aMr

∆ρ2

∂2

∂t∂ϕ
−

1

ρ2

∂

∂r
∆
∂

∂r
−

1

ρ2 sin θ

∂

∂θ
sin θ

∂

∂θ
−
ρ2 − 2Mr

∆ρ2 sin2 θ

∂2

∂ϕ2
.

Equation (4) thus takes the form

∂2u

∂t2
+

4aMr

σ2

∂2u

∂t∂ϕ
−

∆

σ2

∂

∂r

(

∆
∂u

∂r

)

−
∆

σ2 sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

−
ρ2 − 2Mr

σ2 sin2 θ

∂2u

∂ϕ2
+

∆ρ2

σ2
m2u+ λ

∆ρ2

σ2
|u|2u = 0 . (5)

This can be written in a more synthetic manner as

∂2
t u− 2ik∂tu+ hu+ λ

∆ρ2

σ2
|u|2u = 0 , (6)

k =
2iaMr

σ2
∂ϕ , h = −

∆

σ2
∂r ∆ ∂r −

∆

σ2 sin θ
∂θ sin θ ∂θ −

ρ2 − 2Mr

σ2 sin2 θ
∂2

ϕ +
∆ρ2

σ2
m2 .
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Both operators h and k are symmetric on L2(Σ;σ2∆−1drdω), where dω = sin θdθdϕ is
the euclidian measure on S2. Hence, there is a natural conserved quantity for equation
(6), denoted EBL, as “energy with respect to Boyer-Lindquist coordinates”, given by

EBL(u) = ‖∂tu(t)‖
2 + (u(t), hu(t)) +

1

2

(

u(t), λ
∆ρ2

σ2
|u(t)|2u(t)

)

, ∀t ∈ R , (7)

where ‖.‖ and (., .) denote the L2(Σ;σ2∆−1drdω) norm and inner product. This conserved
quantity is not positive because the operator h is not positive. Indeed,

(u, hu) =

∫

Σ

{

∆2

σ2
|∂ru|

2 +
∆

σ2
|∂θu|

2 +
ρ2 − 2Mr

σ2 sin2 θ
|∂ϕu|

2 +
∆ρ2m2

σ2
|u|2
}

σ2

∆
drdω

and the factor ρ2 − 2Mr which multiplies |∂ϕu|
2 is positive outside the ergosphere and

negative inside E .

Remark 2.1 There is another, perhaps more physical (or geometrical) way of obtaining
the expression of the conserved quantity. The stress-energy-momentum tensor of the scalar
field u is given by

8πTab = 2
∂u

∂xa

∂ū

∂xb
− gab

(

gcd
∂u

∂xc

∂ū

∂xd
−m2|u|2 −

λ

2
|u|4
)

and satisfies the conservation law
∇aTab = 0 . (8)

This together with the fact that ∂/∂t is a Killing vector implies that the 1-form Ta0dx
a is

closed. Hence, denoting by Ta the unit future oriented vector field normal to the hyper-
surfaces Σt, given by (see for example [24])

Ta =
1

(gbc∇bt∇ct)
1/2

∇at , Ta ∂

∂xa
=

√

σ2

∆ρ2

(

∂

∂t
+

2aMr

σ2

∂

∂ϕ

)

,

we obtain that the energy of the field, as measured by an observer1 whose 4-velocity vector
is ∂/∂t, is conserved by the evolution and given by

EBL(u, t) =

∫

Σt

TaTa0dVol , (9)

where dVol =
√

ρ2σ2∆−1 drdω is the measure on Σ induced by g. An explicit calculation
of (9) gives 1/(8π) times the expression (7). The quantity EBL is only positive defi-

nite outside the ergosphere since ∂/∂t is only timelike outside the ergosphere.

Moreover, the fact that there exists no globally defined timelike Killing vector

field in block I implies that there is no positive definite conserved energy.

This lack of positivity of the conserved quantity is what allows super-radiance to take
place. Super-radiance is the analogue, at the level of fields of integral spin, of the Penrose
process (see for example [8] or [29]), a mechanism by which particles can extract energy
from the ergosphere.

1Such observers can only exist outside the ergosphere where ∂/∂t is timelike, hence, (9) is to be un-
derstood as the energy of the field measured by distant stationary observers, the typical example being an
observer static at infinity.
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If we consider the linear equation (λ = 0), the absence of positive conserved energy
has two immediate consequences : first, the conserved quantity does not define a natural
Hilbert space framework in which to study the evolution of solutions ; second, for any
Hilbert space framework that we may choose, the evolution will not be unitary. This
is disastrous for the development of a scattering theory, but not for solving the Cauchy
problem. The strategy used in [15] to prove the existence and uniqueness of solutions to
the linear equation was to define a new energy norm as the square root of

‖∂tu(t)‖
2 +

(

u(t), (h+ k2)u(t)
)

which is easily seen to be a positive definite quadratic form, and then to control the growth
of this norm by means of an energy estimate. We choose here to use a more geometrical
method. We perform a 3+1 decomposition of the geometry of block I and of the equation.
This gives us a natural Hilbert space framework for the linear equation inherited from the
positive definite energy on each spacelike slice. The growth of the Hilbert norm is then
also controlled by an energy estimate.

2.2 The 3 + 1 decomposition

The description of block I in terms of Boyer-Lindquist coordinates is based on two quan-
tities :

• the time function t which induces a foliation {Σt}t∈R by its level hypersurfaces ;

• Ka, the only Killing vector field globally defined on BI to be timelike near spacelike
infinity2.

The vector field Ka fixes the product structure BI = Rt × Σ, i.e. the points on different
hypersurfaces Σt are identified along the integral lines of Ka. This choice of product
structure is characterized by the property that the coordinate vector field ∂/∂t is equal to
(or is a constant multiple of) the Killing vector field Ka.

The principle of the 3+1 decomposition is to base the whole structure on the function
t alone. The choice of product structure BI = Rt×Σ is induced in a natural manner by the
foliation itself : instead ofKa, we use Ta, the unit future pointing vector field normal to the
hypersurfaces Σt (or equivalently ∇at). This choice can be made explicit by introducing
the new coordinates τ , R, Θ, Φ, defined in terms of Boyer-Lindquist coordinates as

τ = t , R = r , Θ = θ , Φ = ϕ− tα , α = −
gtϕ

gϕϕ
=

2aMr

σ2
. (10)

We obtain a description of block I that is sometimes referred to as the point of view
of locally non rotating observers. The metric now appears as the sum of its orthogonal
projections along T a and the hypersurfaces Στ and no longer contains terms coupling time
and space variables :

g = N2dτ2 − h(τ) (11)

where

N =

(

gtt −
(gtϕ)2

gϕϕ

)
1
2

=

(

∆ρ2

σ2

)

1
2

2Note that t and Ka are not as independent as they might appear. The function t is in some sense
subordinate to Ka : it is such that all hypersurfaces Σt, t ∈ R, are obtained by pushing an initial
hypersurface, say Σ0, along the flow of Ka.
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and

h(τ) = −grrdR
2 − gθθdΘ2 − gϕϕ

(

dΦ + τ
∂α

∂R
dR+ τ

∂α

∂Θ
dΘ

)2

= −

(

grr + τ2

(

∂α

∂R

)2

gϕϕ

)

dR2 −

(

gθθ + τ2

(

∂α

∂Θ

)2

gϕϕ

)

dΘ2

−gϕϕdΦ2 − 2τ2 ∂α

∂R

∂α

∂Θ
gϕϕdRdΘ − 2τ

∂α

∂R
gϕϕdRdΦ − 2τ

∂α

∂Θ
gϕϕdΘdΦ .

Note that

Tadx
a = Ndτ , Ta ∂

∂xa
=

1

N

∂

∂τ
.

The metric g in its decomposed form (11) is now time dependent since ∂/∂τ is proportional
to Ta and is not a Killing vector field (otherwise block I would be static). It satisfies the
following properties :

(P1) for each τ ∈ R, Στ = (Σ, h(τ)) is a C∞ Riemannian manifold with smooth boundary
∂Σ = {r+} × S2

θϕ ;

(P2) N is strictly positive on Σ and vanishes on ∂Σ ; it is independent of τ , and it is
C∞ and uniformly bounded on Σ as well as all its derivatives ;

(P3) hab ∈ C∞
(

Rτ ; C∞
b

(

Σ̄ ;TabM
))

; hab ∈ C∞
(

Rτ ; C∞
b

(

Σ̄ ;T abM
))

; if we introduce
the radial variable

u(R) :=

∫ R

r+

F−1/2(s)ds ; F (R) =
∆

R2
=

(R− r+)(R− r−)

R2
;

we have

h(0) =
ρ2

R2
du2 +

ρ2

(1 + u)2
(1 + u)2dΘ2

+

[

(R2 + a2)ρ2 + 2MRa2 sin2 Θ

ρ2(1 + u)2

]

(1 + u)2 sin2 Θ dΦ2 ;

this shows that h(τ) is (locally uniformly in time and uniformly on Σ) equivalent to
the euclidian metric on R

3 \ B̄(0, 1)

du2 + (1 + u)2dΘ2 + (1 + u)2 sin2 Θ dΦ2 ; (12)

we also have that h(τ) is asymptotically flat (i.e. h(τ) tends to the metric (12) as
R→ ∞) ;

(P4) the determinent of h(τ) is independent of τ , we denote it |h| ; the determinent of
g is also independent of τ since det g = −N2|h| ; we denote |g| = |det g|.

We use (11) and the fact that |g| is independent of τ to express �g in terms of coordinates
τ , R, Θ, Φ :

�g =
1

|g|
1
2

∂

∂xa

(

|g|
1
2 gab

∂

∂xb

)

=
1

N2

∂2

∂τ2
−

1

N |h|
1
2

∂

∂xα

(

N |h|
1
2hαβ ∂

∂xβ

)

=
1

N2

(

∂2

∂τ2
−N4∆̂

)
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where ∆̂ is the Laplace-Beltrami operator associated with the metric ĥ = N2h

∆̂ = ∆ĥ =
1

|ĥ|
1
2

∂

∂xα

(

|ĥ|
1
2 ĥαβ ∂

∂xβ

)

=
1

N3|h|
1
2

∂

∂xα

(

N |h|
1
2hαβ ∂

∂xβ

)

. (13)

This gives us the new expression of equation (4)

∂2u

∂τ2
−N4∆̂u+N2m2u+ λN2|u|2u = 0 . (14)

3 The global Cauchy problem outside the black hole

The Cauchy problem for equation (4) has been solved in Sobolev spaces in [7], on general
smooth globally hyperbolic space-times without boundary satisfying the essential property
that, in a 3+1 decomposed form, the timelike coordinate vector field is uniformly timelike
on the whole space-time. This property is equivalent to the lapse function being uniformly
bounded and bounded away from zero. Here, not only do we have a boundary, but the
lapse function vanishes there. However, an important property of the geometry of block I
will allow us to use the results of [7] “away from the horizon” and to prove the existence
of smooth solutions to (14). This combined with an energy estimate will solve the Cauchy
problem for the linear equation. For the non linear equation, we use a Duhamel formula
and the classic Sobolev embedding H1(R3) →֒ L6(R3) to obtain uniqueness of minimum
regularity solutions. An energy estimate valid for smooth solutions is extended to solutions
of lower regularity and gives global existence.

The geometry of block I described using the time variable t of the Boyer-Lindquist
coordinates has the following property : light rays (null geodesics) only reach the horizon
for infinite values of t. The typical example is given by principal null geodesics. The
incoming ones describe the movement of a massless particle aimed directly at the centre
of the black hole from infinity. They are defined as the integral lines of the vector field
(expressed in Boyer-Lindquist coordinates)

Na ∂

∂xa
=
r2 + a2

∆

∂

∂t
−

∂

∂r
+
a

∆

∂

∂ϕ
.

The outgoing principal null geodesics describe the trajectory of a massless particle going
away from the horizon so that, when it reaches infinity, it is aimed in the direction opposite
to that of the centre of the black hole ; they are the integral lines of the vector field

La ∂

∂xa
=
r2 + a2

∆

∂

∂t
+

∂

∂r
+
a

∆

∂

∂ϕ
.

Principal null geodesics can be understood as the straightest routes to or from the horizon.
If we introduce a new radial variable r∗ such that

dr∗
dr

=
r2 + a2

∆
(which is > 0 on ]r+,+∞[ ) (15)

the horizon {r = r+} corresponds to r∗ → −∞ and on principal null geodesics, we have
ṙ∗ = ±ṫ. Therefore, the integral lines of Na (resp. La) only reach the horizon as t→ +∞
(resp. t→ −∞).
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The consequence for the propagation of fields is that, if we consider some initial data
living away from the horizon, say

u0 , u1 ∈ C∞
0 (Σ) ,

the support of a corresponding solution to (14) will only reach the horizon for infinite
values of τ . More precisely, if we limit ourselves to a compact time interval [−T, T ]τ , the
solution will remain at a uniformly positive spatial distance from the horizon. Hence, on
the support of the solution and for finite values of τ , we do not see the boundary nor
the fact that the lapse function is not uniformly bounded away from zero. The results of
[7] can therefore be applied to obtain the existence of smooth solutions of (14) associated
with smooth initial data supported away from the horizon. Note that in the case λ = 0,
we can use, instead of [7], the classic results of F.G. Friedlander [14] or J. Leray [18]. We
obtain the following lemma

Lemma 3.1 For initial data u0 , u1 ∈ C∞
0 (Σ), and for any initial time s ∈ R, equation

(14) has a solution u in C∞ (Rτ ; C∞
0 (Σ)) satisfying

u(s) = u0 and ∂τu(s) = u1 .

Definition 3.1 The energy of such solutions as measured by an observer whose four-
velocity vector is ∂/∂τ is expressed as

E3+1(u, τ) =

∫

Στ

TaTa0dVol , Ta0 = Tab

(

∂

∂τ

)a

= TabNTa ,

that is to say

E3+1(u, τ) =

∫

Στ

1

N
T00dVol .

Putting E(u, τ) = 8πE3+1(u, τ), we obtain

E(u, τ) =

∫

Στ

(

|∂τu|
2 +N2hαβ∂αu∂βū+N2m2 |u|2 +

1

2
λN2 |u|4

)

1

N
dVol , (16)

dVol being the volume form defined by h on Σ,

dVol = γdx , γ = |h|
1
2 .

Of course, the expression (16) can be obtained in a more functional analytic manner : at
each time τ , the operator ∆̂ is essentially self-adjoint on L2(Σ ; |ĥ|1/2dx), |ĥ|1/2 = N3γ ;
hence N4∆̂ is essentially self-adjoint on L2(Σ ;N−1γdx) ; this yields at each time a natural
energy norm for solutions of (14) that is exactly given by (16).

Solutions of (14) in C∞ (Rτ ; C∞
0 (Σ)) satisfy the following energy estimate. The proof can

be obtained in the usual way by multiplying the equation by ∂τu and integrating by parts
on ]s, τ [×Σ (one can also take the time derivative of the energy and estimate the terms
which do not cancel each other out by virtue of the equation).

Proposition 3.1 There exists a continuous, strictly positive function Kλ on R
2 such that

Kλ(τ, τ) = 1 and for each u ∈ C∞ (Rτ ; C∞
0 (Σ)) solution of (14), we have for any s, τ ∈ R,

E(u, τ) ≤ Kλ(s, τ)E(u, s) . (17)
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We can now prove the existence and uniqueness of finite energy solutions for the linear
equation

∂2u

∂τ2
−N4∆̂u+N2m2u = 0 . (18)

Definition 3.2 We consider on Σ a fixed smooth Riemannian metric η, for example
η = h(0), or more simply the euclidian metric (12). We define the function space H as
the completion of C∞

0 (Σ) ⊕ C∞
0 (Σ) in the norm

∥

∥

t (φ , ψ)
∥

∥

2

H
=

∫

Σ

(

|ψ|2 +N2 |∇φ|2 +N2m2 |φ|2
) 1

N
dVol

where
|∇φ|2 = ηαβ∂αφ∂βφ .

Finite energy solutions of (18) are naturally defined as the functions u on R×Σ satisfying
(18) in the sense of distributions on R × Σ and such that t(u , ∂τu) ∈ C (Rτ ;H)3.

Theorem 1 For any initial data t(u0 , u1) ∈ H, for any initial time s ∈ R, equation (18)
has a unique solution u such that

t(u , ∂τu) ∈ C (Rτ ;H) , u(s) = u0 , ∂τu(s) = u1 .

Proof of theorem 1 : the uniqueness of finite energy solutions can be proved locally, using
the same arguments that led to the result of lemma 3.1. We consider on the “initial”
hypersurface Σs a compact set K and we denote Ω its domain of influence (both in the
future and in the past). Ω is a compact subset of R × Σ on which N and h are uniformly
bounded and bounded away from zero. The uniqueness of finite energy solutions in Ω is
therefore a consequence of the standard theory of linear hyperbolic operators with smooth
coefficients (see [16]). One can also use in Ω the uniqueness results of [7] in the linear case.
Note that the uniqueness in Ω can be proved directly by means of local energy estimates :
a usual way of obtaining such estimates for finite energy solutions is to regularize the
solution u by convolution and to perform energy estimates for the regularized functions
(there are slightly technical aspects because the regularized functions do not satisfy the
same equation, their d’Alembertian appears on the right hand-side of the estimates and
must be seen, using the properties of convolution, to converge to zero at least weakly in
L2

loc instead of merely in H−1, allowing to extend the estimate to the solution u). Now, Σs

being a Cauchy hypersurface in block I, its domain of influence is the whole of BI . Hence,
if we consider larger and larger compact sets K, their domain of influence Ω will cover BI

completely. This guarantees the uniqueness of finite energy solutions of (18).
Using this uniqueness and the existence of smooth solutions given by lemma 3.1, we

can define on C∞
0 (Σ) ⊕ C∞

0 (Σ) the propagator for (18)

U(τ, s) : t(u0 , u1) 7−→
t(u(τ) , ∂τu(τ)) (19)

where u ∈ C∞ (Rτ ; C∞
0 (Σ)) is the finite energy solution of (18) such that u(s) = u0 and

∂τu(s) = u1. The energy estimate (17) allows us to extend U as a propagator on H, i.e.
satisfying

3The equivalence, uniform in space and locally uniform in time, between h(τ) and η, implies that it is
equivalent to control the energy of u and to control the H-norm of (u, ∂τu)
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(i) U(τ, σ) ∈ L (H) for any τ, σ ∈ R ; ‖U(τ, s)‖L(H) ≤ K0(s, τ) (K0 being the function
Kλ of estimate (17) in the linear case, i.e. for λ = 0) ;

(ii) U(τ, τ) = IdH ; U(τ, σ)U(σ, s) = U(τ, s) ;

(iii) for any V ∈ H, U(τ, σ)V ∈ C
(

R
2
τ,σ ;H

)

;

(iv) we denote A(τ) the time-dependent hamiltonian of equation (18)

A(τ) =

(

0 1
N2∆ĥ −N2m2 0

)

;

we have, for any V ∈ H,

∂

∂τ
U(τ, σ)V = A(τ)U(τ, σ)V and

∂

∂σ
U(τ, σ)V = −U(τ, σ)A(σ)V

in the sense of distributions on R × Σ.

This concludes the proof of theorem 1. 2

We now proceed to solving the Cauchy problem for the non linear equation. We do
not work on the energy space H but on a slightly smaller function space that will allow
us to use the flat Sobolev embedding H1(R3) →֒ L6(R3) to control the non linear term.

Definition 3.3 We introduce the function space H
1, completion of C∞

0 (Σ) in the norm

‖φ‖2
H1 =

∫

Σ

(

N |∇φ|2 +
1

N
|φ|2

)

dVol

and the space H = H
1 ⊕ L2(Σ ;N−1dVol), i.e. the norm on H is given by

∥

∥

∥

∥

(

φ
ψ

)
∥

∥

∥

∥

2

H

=

∫

Σ

{

N |∇φ|2 +
1

N
|φ|2 +

1

N
|ψ|2

}

dVol

=

∫

Σ

{

|ψ|2 +N2 |∇φ|2 + |φ|2
} 1

N
dVol .

We clearly have H →֒ H.

Theorem 2 For any initial data (u0, u1) ∈ H, for any initial time s ∈ R, equation (14)
admits a unique solution u such that

(

u
∂τu

)

∈ C(Rτ ; H) , u(s) = u0 , ∂τu(s) = u1.

Moreover, this solution satisfies energy estimate (17).

Proof of theorem 2 : our first task is to check that the space H is stable under the linear
evolution. We write (18) in its hamiltonian form :

∂V

∂τ
= A(τ)V (20)

V =

(

u
∂τu

)

, A(τ) =

(

0 1
N2∆ĥ −N2m2 0

)

.
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We consider some initial data V0 = t(φ, ψ) ∈ {C∞
0 (Σ)}2, some initial time s ∈ R, and

V ∈ C∞( Rτ ; {C∞
0 (Σ)}2 ) the solution of (20) such that V (s) = V0. For each τ , we can

estimate the norm of V (τ) in H as follows :

‖V (τ)‖
H
≤ ‖V (τ)‖H + ‖u(τ)‖L2(Σ ;N−1dVol) ≤ K0(s, τ) ‖V (s)‖H + ‖u(τ)‖L2(Σ ;N−1dVol)

and

‖u(τ)‖L2(Σ ;N−1dVol) ≤ ‖u(s)‖L2(Σ ;N−1dVol) +

∫

]s,τ [
‖∂τu(σ)‖L2(Σ ;N−1dVol) dσ

≤ ‖V (s)‖
H

+

∫

]s,τ [
‖V (σ)‖H dσ .

Since we have as well H →֒ H, we conclude that there exists a continuous, strictly positive
function K̃ on R

2, K̃(τ, τ) = 1, such that, for any solution u of (18) in C∞ (Rτ ; C∞
0 (Σ)),

‖V (τ)‖
H
≤ K̃(s, τ) ‖V (s)‖

H
.

This entails by density that H is stable under the propagator U and U satisfies the following
properties on H :

(a) U(τ, σ) ∈ L (H) for any τ, σ ∈ R ; ‖U(τ, s)‖L(H) ≤ K̃(s, τ) ;

(b) U(τ, τ) = IdH ; U(τ, σ)U(σ, s) = U(τ, s) ;

(c) for any V ∈ H, U(τ, σ)V ∈ C
(

R
2
τ,σ ; H

)

.

The next step is to study the continuity of the non linear term on H. The Hamiltonian
form of (14) is :

∂V

∂τ
= A(τ)V + J(V ) , J

(

φ
ψ

)

=

(

0

−λN2 |φ|2 φ

)

. (21)

Lemma 3.2 There exists a constant C
J
> 0 such that, for each F , G in H,

‖J(F )‖
H
≤ C

J
‖F‖3

H
, (22)

‖J(F ) − J(G)‖
H
≤ C

J

(

‖F‖2
H

+ ‖G‖2
H

)

‖F −G‖
H
. (23)

Proof of lemma 3.2 : we only need to establish (23) to prove both inequalities. Let

F =

(

φ
ψ

)

, G =

(

f
g

)

,

we have

J(F ) − J(G) =

(

0

−λN2
(

|φ|2 φ− |f |2 f
)

)

.

Writing the second component as

−λN2
{

φ2
(

φ̄− f̄
)

+ f2
(

φ̄− f̄
)

+ φf̄ (φ− f) − φf
(

φ̄− f̄
)

+ fφ̄ (φ− f)
}

,

we obtain
∣

∣

∣
λN2

(

|φ|2 φ− |f |2 f
)∣

∣

∣
≤ CN2 |φ− f |

(

|φ|2 + |f |2
)

.
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We can therefore estimate the norm in H of J(F ) − J(G) as follows :

‖J(F ) − J(G)‖
H

≤ C
∥

∥N2 (|φ− f |)
(

|φ|2 + |f |2
)
∥

∥

L2(Σ ;N−1dVol)

≤ C

(

∥

∥

∥
N3/2 |φ− f | |φ|2

∥

∥

∥

L2(Σ ;dVol)
+
∥

∥

∥
N3/2 |φ− f | |f |2

∥

∥

∥

L2(Σ ;dVol)

)

≤ C ′

[

∥

∥

∥
N1/2 (φ− f)

∥

∥

∥

L6(Σ)

(

∥

∥

∥
N1/2φ

∥

∥

∥

2

L6(Σ)
+
∥

∥

∥
N1/2f

∥

∥

∥

2

L6(Σ)

)]

, (24)

L6(Σ) denoting L6(Σ ; dVol). Now the flat Sobolev embedding H1(R3) →֒ L6(R3) imme-
diately entails

H1
0 (Σ) →֒ L6 (Σ ; dVol) (25)

where we define H1
0 (Σ) as the completion of C∞

0 (Σ) in the norm

‖u‖2
H1(Σ) =

∫

Σ

{

|u|2 + |∇u|2
}

dVol .

For u in C∞
0 (Σ), we have

∥

∥

∥
N1/2u

∥

∥

∥

2

H1(Σ)
=

∫

Σ







N |u|2 +N |∇u|2 +

∣

∣

∣

∣

∣

N−1/2

2
∇N

∣

∣

∣

∣

∣

2

|u|2







dVol ≤ C ‖u‖2
H1 (26)

using the uniform boundedness of ∇N on Σ. This inequality is still valid for u ∈ H
1 by

density. Putting together (24), (25) and (26) gives (23) and concludes the proof of lemma
3.2. 2

We can now solve the global Cauchy problem for (21) in H :

{

∂τV = A(τ)V + J(V ) ;
V (s) = V0 ∈ H ; V ∈ C (Rτ ; H) ;

(27)

by studying its Duhamel formulation :

V (τ) = U(τ, s)V0 +

∫ τ

s
U(τ, σ)J(V (σ))dσ ; V ∈ C (Rτ ; H) . (28)

Proposition 3.2 Problems (27) and (28) are equivalent. Moreover, the solutions of (28)
are unique.

Proof of proposition 3.2.
First step : equivalence between (27) and (28). A remark essential for the proof is that

d

dτ
U(τ, s) = A(τ)U(τ, s)

in the strong sense on L(H ;L2
loc(Σ) ⊕ H−1

loc (Σ)). If we consider V a solution of (28),
differentiating the integral equation4, we get the equality in C

(

Rτ ;L2
loc(Σ) ⊕H−1

loc (Σ)
)

:

∂V

∂τ
(τ) = A(τ)U(τ, s)V0 +A(τ)

∫ τ

s
U(τ, σ)J(V (σ))dσ + J(V (τ)) = A(τ)V (τ) + J(V (τ)) .

4Recall that by lemma 3.2, V ∈ C(Rτ ; H) entails J(V ) ∈ C(Rτ ; H).
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Hence, V satisfies (27). Conversely, if V is a solution of (27), putting

Φ(τ) = J(V (τ)) ∈ C (Rτ ; H) ,

we see that V is a solution of

∂τΨ(τ) = A(τ)Ψ(τ) + Φ(τ) , Ψ(s) = V0 , Ψ ∈ C (Rτ ; H) . (29)

The uniqueness of solutions of (29) follows directly from the uniqueness for (20) and the
following expression defines a solution :

Ψ(τ) = U(τ, s)V0 +

∫ τ

s
U(τ, σ)Φ(σ)dσ .

It follows that V satisfies (28).
Second step : local uniqueness of solutions of (28). This is a straightforward consequence
of lemma 3.2. We consider T > 0 and V , W two solutions of (28) on [s, s+ T ] (the same
thing can of course be done on [s− T, s]), that is to say, V and W are solutions of :

Ψ(τ) = U(τ, s)V0 +

∫ τ

s
U(τ, σ)J(Ψ(σ))dσ for s ≤ τ ≤ s+T ; Ψ ∈ C ([s, s+ T ] ; H) . (30)

We have for τ ∈ [s, s+ T ],

V (τ) −W (τ) =

∫ τ

0
U(τ, σ) (J(V (σ) − J(W (σ)) dσ .

Hence, putting C = C
J

max
{

K̃(σ, τ) ; σ, τ ∈ [s, s+ T ]
}

,

‖V (τ) −W (τ)‖
H

≤ C

∫ τ

s

(

‖V (σ)‖2
H

+ ‖W (σ)‖2
H

)

‖V (σ) −W (σ)‖
H

dσ

≤ C

(

sup
σ∈[s,s+T ]

(

‖V (σ)‖2
H

+ ‖W (σ)‖2
H

)

)

∫ τ

s
‖V (σ) −W (σ)‖

H
dσ

which, by Gronwall’s lemma, entails that V ≡W . This proves the uniqueness of solutions
of (28) and thence the uniqueness of solutions of (27). The proof of proposition 3.2 is
complete. 2

Our last task is to prove the global existence of solutions of (27). The result of lemma
3.1 allows us to do this without having first to prove local existence using a fixed point
theorem. Let V0 ∈ H, s ∈ R, we consider a sequence

{

V n
0 = t (un

0 , u
n
1 )
}

n
in (C∞

0 (Σ))2 such
that

V n
0 −→ V0 in H

and we denote by V n = t(un, ∂τu
n) the solution of (21) in (C∞ (Rτ ; C∞

0 (Σ)))2 such that
V n(s) = V n

0 . The existence of V n is guaranteed by lemma 3.1 and its uniqueness by
proposition 3.2. We show that {V n}n is a Cauchy sequence in C(Rτ ; H). For this purpose,
we first need to check that {V n}n is bounded on C(Rτ ; H). Let T > 0, we denote

κ(s, T ) = max
τ∈[s−T,s+T ]

Kλ(s, τ) .

For τ ∈ [s− T, s+ T ] and n in N, we have the energy estimate

E(un, τ) ≤ κ(s, T )E(un, s) .
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Now

E(un, s) =

∫

Σs

(

|∂τu
n|2 +N2hαβ∂αu

n∂βun +N2m2 |un|2 +
1

2
λN2 |un|4

)

N−1dVol

≤ C

(

‖V n
0 ‖2

H +
1

2

∥

∥

∥
λN2 (un

0 )3
∥

∥

∥

L2(Σ ;N−1dVol)
‖un

0‖L2(Σ ;N−1dVol)

)

and we have
∥

∥

∥
λN2 (un

0 )3
∥

∥

∥

L2(Σ ;N−1dVol)
= ‖J(V n

0 )‖
H
≤ C

J
‖V n

0 ‖3
H
, ‖un

0‖L2(Σ ;N−1dVol) ≤ ‖V n
0 ‖

H
.

Hence, since {V n
0 }n converges in H, the sequence {E(un, τ)}n is bounded uniformly in

τ ∈ [s−T, s+T ]. Besides, the quadratic part of the energy, i.e. the energy E without the
quartic term, is (locally uniformly in time) equivalent to the H norm. We infer that the
sequence {‖V n(τ)‖H}n is bounded uniformly in τ ∈ [s− T, s+ T ]. In order to control the
norm of V n(τ) in H, we have yet to control the norm of un(τ) in L2(Σ ;N−1dVol) ; we do
this exactly as in the proof of the stability of H under U :

‖un(τ)‖L2(Σ ;N−1dVol) ≤ ‖un(s)‖L2(Σ ;N−1dVol) +

∫

]s,τ [
‖∂τu

n(σ)‖L2(Σ ;N−1dVol) dσ

≤ ‖V n
0 ‖

H
+

∫

]s,τ [
‖V n(σ)‖H dσ .

It follows that {‖V n(τ)‖H}n is bounded uniformly in τ ∈ [s− T, s+ T ]. Let

C̃(s, T ) = sup {‖V n(τ)‖H ; τ ∈ [s− T, s+ T ] , n ∈ N} .

We then prove that {V n}n is a Cauchy sequence in C(Rτ ; H). Let T > 0, we consider
τ ∈ [s− T, s+ T ], n and m in N :

‖V m(τ) − V n(τ)‖
H

=

∥

∥

∥

∥

U(τ, s) (V m
0 − V n

0 ) +

∫ τ

s
U(τ, σ) (J(V m(σ)) − J(V n(σ))) dσ

∥

∥

∥

∥

H

.

Denoting
κ̃(s, T ) = max

τ,σ∈[s−T,s+T ]
K̃(σ, τ) ,

using lemma 3.2 and the bound on {‖V n(τ)‖H}n, we have

‖V m(τ) − V n(τ)‖
H

≤ κ̃(s, T )

{

‖V m
0 − V n

0 ‖
H

+ 2C
J

(

C̃(s, T )
)2
∫

]s,τ [
‖V m(σ) − V n(σ)‖

H
dσ

}

.

The convergence of {V n
0 }n in H together with Gronwall’s lemma imply that {V n}n is

a Cauchy sequence in C(Rτ ; H). Denoting V the limit of {V n}n in C(Rτ ; H), we have
J(V n) → J(V ) in C(Rτ ; H) by continuity of J on H. Hence V satisfies (21) in the sense
of distributions on Rτ ×Σ, in addition to which V (s) = V0 and V ∈ C(Rτ ; H). Thus, V is
a global solution of (27). Note also that V satisfies energy estimate (17) since, by lemma
3.2, the energy E is continuous on C(Rτ ; H). This concludes the proof of theorem 2. 2
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4 Asymptotic behaviour of smooth massless fields at the

horizon and at infinity

We use Roger Penrose’s technique of conformal compactification to prove, for smooth
solutions compactly supported in space, the existence of smooth asymptotic profiles at
the horizon and at null infinity. This technique requires the equation to be invariant
under conformal transformations. Hence, we only consider in this chapter equation (4) for
m = 0, i.e. the non linear wave equation :

�gu+ λ|u|2u = 0 , λ ≥ 0 . (31)

4.1 Penrose compactification of the exterior of the black hole

The compactification of block I is based on the structure given by the two principal null
geodetic congruences. We recall that the outgoing and incoming principal null geodesics
are respectively the integral lines of the principal null vector fields, expressed in Boyer-
Lindquist coordinates as :

La ∂

∂xa
=
r2 + a2

∆

∂

∂t
+

∂

∂r
+
a

∆

∂

∂ϕ
;

Na ∂

∂xa
=
r2 + a2

∆

∂

∂t
−

∂

∂r
+
a

∆

∂

∂ϕ
.

Two coordinate systems, globally defined on block I using either outgoing or incoming
principal null geodesics as coordinate lines, allow us to show the regularity of the metric
g across the horizon and to construct a metric ĝ, conformally equivalent to g, which is
smooth on future and past null infinities.

The Kerr-star coordinate system is based on incoming principal null geodesics. The
idea is to introduce new coordinates t∗ and ϕ∗ of the form

t∗ = t+ T (r) , ϕ∗ = ϕ+ Λ(r) ,

with the functions T and Λ such that

dT

dr
=
r2 + a2

∆
,

dΛ

dr
=

a

∆
.

Kerr-star coordinates (t∗, r, θ, ϕ∗) are defined globally on block I5. The incoming principal
null geodesics now appear as the r coordinate curves parametrized by s = −r (or −r+C) :

ṙ = −1 , θ̇ = 0 , ṫ∗ = ṫ+
dT

dr
ṙ = 0 , ϕ̇∗ = ϕ̇+

dΛ

dr
ṙ = 0 .

The Kerr metric in Kerr-star coordinates takes the form

g = gttdt
∗2 + 2gtϕdt∗dϕ∗ + gϕϕdϕ∗2 − ρ2dθ2 − 2dt∗dr + 2a sin2 θ dϕ∗dr , (32)

5With the exception of the axis (θ = 0 and θ = π) ; this coordinate singularity, similar to that of
spherical coordinates on R

3, can be dealt with simply (see [25] lemma 2.2.2), we shall systematically ignore
it.
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where gtt, 2gtϕ, gθθ and gϕϕ are the coefficients of dt2, dtdϕ, dθ2 and dϕ2 in the expression
(2) of g in Boyer-Lindquist coordinates :

gtt = 1 −
2Mr

ρ2
, gtϕ =

2aMr sin2 θ

ρ2
, gθθ = −ρ2 , gϕϕ = −

σ2

ρ2
sin2 θ .

In Boyer-Lindquist coordinates, the only metric coefficient to be singular at the horizon
was grr and it does not appear in (32). It follows that g can be extended smoothly across
the horizon {r = r+}. Besides, it does not degenerate there ; indeed a simple calculation
shows that the determinent of g is given by

det(g) = −ρ4 sin2 θ .

and does not vanish for r = r+. Thus, we can add the horizon to block I as a smooth
boundary6. We must however be careful in the interpretation of this gluing. The horizon
described in the Kerr-star coordinate system is reached along incoming null geodesics,
hence as t → +∞ ; it is the horizon that is reached by light rays or even material bodies
falling into the black hole and not the horizon seen as R × ∂Σ in the 3 + 1 decomposition
of BI . The hypersurface

H
+ = Rt∗ × {r = r+} × S2

θ,ϕ∗

shall be referred to as the future horizon and is a smooth null hypersurface in the space-
time (BI ∪ H+ , g). The fact that H+ is null is easily shown considering the metric induced
by g on hypersurfaces of constant r :

gr = gttdt
∗2 + 2gtϕdt∗dϕ∗ + gϕϕdϕ∗2 − ρ2dθ2 .

This induced metric has determinent

det(gr) = −ρ2
(

gttgϕϕ − (gtϕ)2
)

= ρ2∆ sin2 θ

and thus degenerates for ∆ = 0, i.e. at the horizon7.
The Kerr-star coordinate system also allows us to construct past null infinity (denoted

I−, the set of limit points of incoming principal null geodesics as r → +∞) and to interpret
it as a smooth null hypersurface in a conformally rescaled space-time. In the expression
(32) of the metric, we change the null coordinate r to w = 1/r, then we introduce the
rescaled metric

ĝ = Ω2g , Ω = w =
1

r
. (33)

In the coordinate system (t∗, w, θ, ϕ∗), ĝ takes the form

ĝ =

(

w2 −
2Mw3

1 + a2w2 cos2 θ

)

dt∗2 +
4Maw3 sin2 θ

1 + a2w2 cos2 θ
dt∗dϕ∗

−

(

1 + a2w2 +
2Ma2w3 sin2 θ

1 + a2w2 cos2 θ

)

sin2 θ dϕ∗2

−
(

1 + a2w2 cos2 θ
)

dθ2 + 2dt∗dw − 2a sin2 θ dϕ∗dw .

6In fact, the Kerr-star coordinate system is used to glue block II to the future of block I along the outer
horizon and also to glue block III to the future of block II along the inner horizon. Our purpose here is
merely to study the behaviour of solutions at the horizon and at infinity ; this only requires to glue these
hypersurfaces to block I as boundaries.

7We have shown that the metric g does not degenerate at points of the hypersurface {r = r+} but
its restriction to this hypersurface is degenerate. This shows that the hypersurface is null, i.e. one of its
generators is null.
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The metric ĝ is therefore smooth on the domain

Rt∗ ×

[

0,
1

r+

]

w

× S2
θ,ϕ∗

and does not degenerate at {w = 0}, since

det (ĝ) = −w4ρ4 sin2 θ = −
(

1 + a2w2 cos2 θ
)2

sin2 θ 6= 0 for w = 0 .

Any point x0 = (t∗0, w = 0, θ0, ϕ
∗
0) of {w = 0} can be reached along the line

γ(s) = (t∗ = t∗0, w = s, θ = θ0, ϕ
∗ = ϕ∗

0)

as s decreases to 0 ; this line is the incoming principal null geodesic corresponding to
t∗ = t∗0, θ = θ0 and ϕ∗ = ϕ∗

0 parametrized by s = 1/r. Hence, past null infinity is
described in coordinates (t, w, θ, ϕ∗) as

I
− = Rt∗ × {w = 0} × S2

θ,ϕ∗

and can be added to our rescaled space-time as a smooth boundary. The restriction of ĝ
to the hypersurface {w = 0}

ĝ|w=0
= −dθ2 − sin2 θ dϕ∗2

is simply the opposite of the euclidian metric on the 2-sphere and is consequently degen-
erate since I− is a 3-surface. Thus, in the space-time (BI ∪ H+ ∪ I− , ĝ), I− is a smooth
null hypersurface.

Working now with outgoing instead of incoming principal null geodesics, we define
star-Kerr coordinates (∗t, r, θ, ∗ϕ), where the new variables ∗t and ∗ϕ are defined by

∗t = t− T (r) , ∗ϕ = ϕ− Λ(r) ,

T and Λ being the same functions as in the definition of t∗ and ϕ∗. Analogous constructions
can be followed through with this coordinate system in which the outgoing principal null
geodesics appear as the r coordinate lines. We thus define the past horizon8

H
− = R∗t × {r = r+} × S2

θ,∗ϕ

and future null infinity I+, the set of limit points of outgoing principal null geodesics as
r → +∞, also described as

I
+ = R∗t × {w = 0} × S2

θ,∗ϕ .

We obtain a conformally “compactified” space-time

(

BI ∪ H
+ ∪ H

− ∪ I
+ ∪ I

− , ĝ
)

that is a smooth Lorentzian manifold with boundary H+ ∪ H− ∪ I+ ∪ I−, reunion of four
smooth null hypersurfaces. This space-time is not compact however since the boundary is
not complete ; four “points”, or 2-spheres, have been missed out :

8The past horizon is the horizon from which light rays or material bodies can emerge, the horizon of
a white hole rather than a black hole. White holes appear necessarily in the construction of maximal
analytic extensions of eternal black hole space-times such as Schwarzschild or Kerr. See [24] or [25] for a
more complete description of maximal Kerr space-time.
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• the part of the horizon described in Boyer-Lindquist coordinates as

H0 = Rt × {r = r+} × S2
θ,ϕ

can be understood as a single 2-sphere, called the crossing sphere, where the future
and past horizons meet ; the metric g (and consequently also ĝ) is regular at this
crossing sphere (see [25] for details) ;

• spacelike infinity, denoted i0, is the set of limit points of spacelike lines (future or
past oriented) going out to infinity at a speed uniformly greater than the speed of
light, typical examples being the integral lines of the vector fields

±
r2 + a2

∆

∂

∂t
+ C

∂

∂r
±
a

∆

∂

∂ϕ
, C > 1 .

In the rescaled space-time, i0 is a singular point where I+ and I− meet ; at best,
a rescaled metric is continuous at i0 and its derivative admits direction dependent
limits there9;

• future timelike infinity i+ is the set of limit points of future oriented lines going
out to infinity at a speed uniformly lower than the speed of light ; for example the
integral lines of the vector fields

r2 + a2

∆

∂

∂t
+ C

∂

∂r
+
a

∆

∂

∂ϕ
, 0 < C < 1 ;

in the rescaled space-time, i+ is a singularity, much more serious than i0, where two
hypersurfaces of a very different nature (I+ and H+) meet ; past timelike infinity i−
plays a symmetric role in the infinite past.

We define the Penrose compactification of the exterior of a slow Kerr black hole as BI to
which have been glued the complete horizon H+∪H0∪H− as well as I+ and I−, equipped
with the smooth metric ĝ. We denote it

(

BI , ĝ
)

, BI = BI ∪ H
+ ∪ H0 ∪ H

− ∪ I
+ ∪ I

− .

It can be schematically represented as in figure 1.

4.2 Asymptotic profiles and radiation conditions for smooth solutions

Equation (31) is conformally invariant. This means that the two following propositions
are equivalent :

1. u ∈ C∞(BI) is a solution of (31) ;

2. û = Ω−1u = ru ∈ C∞(BI) is a solution of

�ĝû+
1

6
Rĝû+ λ |û|2 û = 0 (34)

where Rĝ is the scalar curvature associated with the metric ĝ (recall that g being a
solution to Einstein’s vacuum equations, Rg is zero, which is the reason why it does
not appear in (31)).

9Whenever a space-time contains energy, which is characterized by a non zero ADM mass, we cannot
expect the rescaled metric to be more than Lipschitz at spacelike infinity (see [27] Vol. II or [29]).
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Past

 Future
horizon

horizon

null infinity

null infinity

Future timelike infinity

Past timelike infinity

Spacelike infinity

Στ

Past

Crossing
sphere σΣ , σ < τ

Figure 1: The Penrose diagram of block I

The metric ĝ being smooth on BI , so is Rĝ, but both ĝ and Rĝ become singular at i0, i+
and i−. In order to work on a smooth space-time, we remove neighbourhoods of i0, i+
and i−. The construction is based on the hypersurface Σ0 ; this is in no way a special
choice, the same construction can be performed based on any other hypersurface Σs. We
consider in the physical space-time (BI , g) a smooth inextendible timelike curve {γ(t)}t∈R

parametrized by the time variable of the Boyer-Lindquist coordinates. In the compactified
space-time, the curve γ(t) runs from i− to i+ as t varies from −∞ to +∞. For ε > 0, we
remove from BI the future of γ(1/ε) and the past of γ(−1/ε). We also remove (assuming
ε < 1/r+) the complement of the domain of dependence of the compact subset of Σ0 :

Kε =
{

(t, r, θ, ϕ) ; t = 0, r+ ≤ r ≤ 1/ε, (θ, ϕ) ∈ S2
}

.

We obtain a space-time (Mε , ĝ), shown in figure 2, that can be extended (see figure 3)
as a smooth, globally hyperbolic, spatially compact space-time

(

Rσ × S3 ;Gε

)

, Gε|Mε
=

ĝ, the time variable σ being chosen so that Kε ⊂ {0}σ × S3. We now consider u in
C∞ (Rτ ; C∞

0 (Σ)) a solution of (31). Then û = ru is a smooth solution of (34) on BI . We
choose ε > 0 small enough so that Kε contains the supports of u(0) and ∂τu(0), in this
manner, the cut-off near i0 does not alter the solution u. Then, for σ0 > 0 not too large10,
the function ψ on [−σ0, σ0]×S

3 obtained by extending û by zero in
(

[−σ0, σ0] × S3
)

\Mε

is a solution in C∞
(

[−σ0, σ0] ; C
∞(S3)

)

of equation

�
Gε
ψ +

1

6
R

Gε
ψ + λ |ψ|2 ψ = 0 . (35)

The results of [7] guarantee that ψ can be extended in a unique manner as a solution of
(35) in C∞

(

Rσ ; C∞(S3)
)

. Moreover, by uniqueness of solutions of (31) in BI , ψ coincides

10We simply need to choose σ0 > 0 small enough so that, for σ ∈ [−σ0, σ0], the support of û does not
touch the boundary of Mε.
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γ (t)

M ε

γ

γ

(1/ε)

(−1/ε)

Kε

Figure 2: The construction of the space-time Mε

M ε

Figure 3: Extension of Mε as R × S3
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with û on Mε ∩ BI . This proves that û is smooth on Mε for any ε > 0, whence the
smoothness of û on BI .

From this property of û, we can infer two types of properties for u : the existence
of asymptotic profiles at H± and I± and the fact that u satisfies Sommerfeld radiation
conditions there. This is expressed more precisely in the following theorem :

Theorem 3 Let u ∈ C∞ (Rt ; C∞
0 (Σ)) be a solution of (31). There exists four smooth

functions
ΦH+ , ΦH− , ΦI+ , ΦI− ∈ C∞

(

R × S2
)

defined simply as the traces of û = ru on H+, H−, I+ and I−, such that, if we denote
γ−s,ω, s ∈ R, ω ∈ S2, the incoming principal null geodesic (parametrized by r) described in
Kerr-star coordinates as

γ−s,ω(r) = (t∗ = s, r, (θ, ϕ∗) = ω)

and γ+
s,ω, s ∈ R, ω ∈ S2, the outgoing principal null geodesic (parametrized by r) described

in star-Kerr coordinates as

γ+
s,ω(r) = (∗t = s, r, (θ, ∗ϕ) = ω) ,

we have for all (s, ω) ∈ R × S2

lim
r→r+

u
(

γ−s,ω(r)
)

=
1

r+
ΦH+(s, ω) , (36)

lim
r→+∞

r u
(

γ−s,ω(r)
)

= ΦI−(s, ω) , (37)

lim
r→r+

u
(

γ+
s,ω(r)

)

=
1

r+
ΦH−(s, ω) , (38)

lim
r→+∞

r u
(

γ+
s,ω(r)

)

= ΦI+(s, ω) . (39)

Moreover, u satisfies the radiation conditions, expressed in Boyer-Lindquist coordinates
and using the Regge-Wheeler type coordinate r∗ defined in (15) :

lim
r→r+

(

∂tu+ ∂r∗u+
a

r2 + a2
∂ϕu

)

(

γ+
s,ω(r)

)

= 0 , (40)

lim
r→+∞

(∂tu+ ∂r∗u)
(

γ+
s,ω(r)

)

= 0 , (41)

lim
r→r+

(

∂tu− ∂r∗u+
a

r2 + a2
∂ϕu

)

(

γ−s,ω(r)
)

= 0 , (42)

lim
r→+∞

(∂tu− ∂r∗u)
(

γ−s,ω(r)
)

= 0 . (43)

Remark 4.1 Using the smoothness of ∂u
∂ϕ on BI , established in the proof below, we can

simplify (40) and (42) to

lim
r→r+

(

∂tu+ ∂r∗u+
a

r2+ + a2
∂ϕu

)

(

γ+
s,ω(r)

)

= 0 ,

lim
r→r+

(

∂tu− ∂r∗u+
a

r2+ + a2
∂ϕu

)

(

γ−s,ω(r)
)

= 0 .

This shows that the radiation conditions at the horizon differ from those at infinity by a
rotation imposed on the field, the angular velocity of this rotation, a

r2
+

+a2 , being exactly

the rotation speed of the horizon as seen by an observer static at infinity (see for example
[29]).
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Proof of theorem 3 : the part concerning the asymptotic profiles is simply a precise ex-
pression of the existence of smooth traces for û on H± and I± ; using the definitions of
these hypersurfaces in terms of Kerr-star and star-Kerr corrdinates, the traces ΦH+ , ΦH− ,
ΦI+ and ΦI− are naturally defined as functions on R × S2, pointwise limits of û = ru
along principal null geodesics. The radiation conditions are consequences of the regularity
of û on BI . We prove conditions (40) and (41), the proof for (42) and (43) is similar using
incoming instead of outgoing principal null geodesics.

Working in star-Kerr coordinates with w = 1/r, we know that ∂û
∂w must be smooth on

BI since û is. Now

w
∂û

∂w
= −r2

∂u

∂r
− û .

This implies that r2 ∂u
∂r must be smooth on BI and hence

∂u

∂r
= O

(

1

r2

)

as r → +∞ .

Going back to Boyer-Lindquist coordinates, this gives for each (s, ω) ∈ R × S2 :

(

r2 + a2

∆

∂u

∂t
+
∂u

∂r
+
a

∆

∂u

∂ϕ

)

(

γ+
s,ω(r)

)

= O

(

1

r2

)

as r → +∞ .

We can multiply the whole quantity by ∆
r2+a2 without changing the rate of fall-off. Since

u = wû is smooth on BI and since ∂
∂∗ϕ is a smooth vector field on BI (essentially because

in standard spherical coordinates ∂
∂ϕ is a smooth vector field on S2), ∂u

∂∗ϕ is also smooth

on BI . In terms of Boyer-Lindquist coordinates, this simply means that ∂u
∂ϕ is smooth on

BI and is therefore uniformly bounded on each principal null geodesic. Hence, we obtain

(

∂u

∂t
+

∆

r2 + a2

∂u

∂r

)

(

γ+
s,ω(r)

)

= O

(

1

r2

)

as r → +∞ ,

which in turn implies (41).
The proof of (40) is even simpler. Since û is smooth on BI , we have in star-Kerr

coordinates that ∂û
∂w is smooth on BI , whence ∂u

∂r is smooth at H−. This can be expressed
in terms of Boyer-Lindquist coordinates as the property that, for each (s, ω) ∈ R×S2, the
quantity

(

r2 + a2

∆

∂u

∂t
+
∂u

∂r
+
a

∆

∂u

∂ϕ

)

(

γ+
s,ω(r)

)

has a finite limit as r tends to r+. Multiplying the previous expression by ∆
r2+a2 , which

tends to 0 as r tends to r+, we obtain (40). This concludes the proof of theorem 3. 2
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[7] F. Cagnac, Y. Choquet-Bruhat, Solution globale d’une équation non linéaire sur une
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