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Non linear Klein-Gordon equation
on Schwarzschild-like metrics

by J. P. Nicolas

Résumé: On résout le problème de Cauchy global pour une equation non linéaire de Klein-Gordon à
l’extérieur d’un trou noir sphérique. On établit l’existence à l’horizon d’un champ de radiation rentrante
(condition d’impédance de T.DAMOUR). Dans le cas d’un espace-temps asymptotiquement plat, les champs
sans masse vérifient à l’infini la condition de radiation sortante de Sommerfeld.

Abstract: We solve the global Cauchy problem for a non linear Klein-Gordon equation outside a spherical
Black-Hole. On the horizon of the Black-Hole, the fields satisfy T.DAMOUR’s impedance condition. When
space-time is asymptotically flat, massless fields satisfy Sommerfeld’s outgoing condition at infinity.

Introduction

In Minkowski space-time, global solutions of non-linear Klein-Gordon equation �u + m2u + λ|u|2u =
0 , λ ≥ 0 have a well known asymptotic behavior (see for example J. Ginibre and G. Velo [10] or W. Strauss
[13]). Inflationary cosmological scenarii of quantum cosmology with symetry break of Higgs’s fields make
this equation very interesting to study in a curved space-time. The Cauchy problem on a globally hyperbolic
regular manifold IRt × Vx has been solved by F.Cagnac and Y.Choquet-Bruhat [4]. The purpose of this
paper is to prove similar results in space-times defined by a spherical black-hole, i.e. the curves x = cst are
not uniformly time-like near a horizon. The Cauchy problem for the Yang-Mills system in the Schwarzschild
metric has been worked out by W.T.Shu [11] using very delicate methods developped by D.Christodoulou
and S.Klainerman. These methods require a massless field as well as small and very regular initial data. We
deal here with the simpler case of Klein-Gordon equation. We adopt an approach already used in [4][5][6]. A
Sobolev embedding result on a Riemannian manifold and a conserved energy allow us to establish the global
existence for arbitrarily big solutions with the least possible regularity. Then we use Kruskal coordinates to
study the asymptotic behavior at the horizon and Penrose coordinates for the behavior at infinity.

Let us consider the manifold IRt×]0,+∞[r×S2
θ,φ endowed with the pseudo-riemannian metric

gµνdx
µdxν = F (r)e2δ(r)dt2 − [F (r)−1dr2 + r2dθ2 + r2sin2θdφ2] (1)

where F, δ ∈ C∞(]0,+∞[r). We assume the existence of three values rν of r, 0 ≤ r− < r0 < r+ ≤ +∞, the
only possible zeros of F , such that

F (rν) = 0 F ′(rν) = 2κν κν 6= 0 if 0 < rν < +∞
F (r) > 0 for r ∈]r0, r+[ F (r) < 0 for r ∈]r−, r0[

When they are finite and non zero, r−, r0 and r+ are the radii of the spheres called: horizon of the black hole
(r0), Cauchy horizon (r−) and cosmological horizon (r+). These horizons are fictitious singularities which
can be removed by Kruskal-Szekeres transformations. κν is the surface gravity at the horizon {r = rν}. If
r+ is infinite, we assume moreover that

F (r) = 1− r1
r +O

(
r−2

)
, r1 > 0 , δ(r) = δ(+∞) + o(r−1) r → +∞

k = 1, 2, 3 , ∂k
rF (r) , ∂k

r δ(r) = O(r−k−1) , r → +∞
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All these properties are satisfied by usual spherical black holes, described by functions F and δ of the
following type

δ = 0, F (r) = 1− 2M
r

+ γpqQ
pQqr−2 +

Λr2

3
(2)

In other words, a convenient choice of the coefficients in the previous expression gives any usual solution
like Schwarzschild, Reissner-Nordstrøm, Yasskin, asymptotically flat (Λ = 0) or DeSitter (Λ 6= 0). M , Qp,
γpq and Λ must be held to be the mass of the black-hole, the gauge charge, the invariant metric on the Lie
group and the cosmological constant. The function δ allows us to include in our study the case of non-abelian
chromatic black-holes associated with the SU(2) gauge group. These black-holes were discovered numerically
by P.Bizon [3] and their existence has been proved by J.A. Smoller, A.G. Wasserman and T.S.Yau [12].

We study the nonlinear equation of scalar fields with mass m ≥ 0 and spin zero

�gu+m2u+ ξRu+ λ|u|2u = 0 , λ ≥ 0 , ξ ∈ IR (3)

where �g and R are the wave operator and the scalar curvature associated with metric (1)

�g = g−
1
2
∂

∂xα

(
g

1
2 gαβ ∂

∂xβ

)
, g = |det(gαβ)| = e2δr4sin2θ (4)

and

R = F ′′ + 3F ′δ′ +
4F ′

r
+ F

[
2δ′′ + 2δ′ +

4δ′

r
+

2
r2

]
− 2
r2

(5)

In order to make long range interactions disappear in the case of massless fields and to straighten radial null
geodesics, we introduce the Regge-Wheeler coordinate r∗ such that

dr

dr∗
= Feδ (6)

An elementary calculation shows that function f = ru satisfies

∂2f

∂t2
− ∂2f

∂r2∗
+ Fe2δ

[
−∆S2

r2
+m2 + r−1e−δ d

dr
(Feδ) + ξR+

λ

r2
|f |2

]
f = 0 (7)

where ∆S2 is the Laplace-Beltrami operator on the sphere S2. Since we want the energy to be positive
outside the black-hole, we make the hypothesis that the linear potential in equation (3) is positive between
r0 and r+

m2 + r−1e−δ d
dr (Feδ) + ξR > 0 for r ∈ [r0, r+] (H1)

This condition is satisfied by any kind of black hole given by (2) for m = 0 and ξ = −1/6 if Λ 6= 0. In the
case of coloured black holes ([3][12]), we have checked (H1) using numerical experiments.

Notations: Let (M, g) be a Riemannian manifold, C∞0 (M) denotes the set of C∞functions with compact
support in M , Hk(M, g), k ∈ IN is the Sobolev space, completion of C∞0 (M) for the norm

‖f‖2Hk(M) =
k∑

j=0

∫
M

〈
∇jf,∇jf

〉
dµ

where ∇j , dµ and <,> are respectively the covariant derivatives, the measure of volume and the scalar
product associated with metric g. We write L2(M, g) = H0(M, g).

If E is a distribution space on M , Ecomp represents the subspace of elements of E with compact support
in M .

The 2-dimensional euclidian sphere S2
ω is endowed with its usual metric

dω2 = dθ2 + sin2θdϕ2 , 0 ≤ θ ≤ π , 0 ≤ ϕ < 2π
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1 Linear Klein-Gordon equation

Through a method similar to J.Dimock’s [8], we study the linear version of equation (7)

∂2f

∂t2
− ∂2f

∂r2∗
+ Fe2δ

[
−∆S2

r2
+m2 + r−1e−δ d

dr
(Feδ) + ξR

]
f = 0 (8)

its hamiltonian form is
∂U

∂t
= −HU (9)

where

U =
(

f
∂tf

)
, H =

(
0 −1
h 0

)
, h = − ∂2

∂r2∗
+ Fe2δ

[
−∆S2

r2
+m2 + r−1e−δ d

dr
(Feδ) + ξR

]
(10)

We prove that H is skew adjoint on a Hilbert space. Let us define the Hilbert space K by

K = L2(Π; dr2∗ + dω2) ' L2(IR; dr2∗)⊗ L2(S2; dω2) , Π = IRr∗ × S2
ω (11)

Let Ylm be the basis of spherical harmonics for L2(S2; dω2) satisfying

−∆S2Ylm = l(l + 1)Ylm for |m| ≤ l , ‖Ylm‖L2 = 1

We write K as

K = ⊕
l,m

Klm , Klm = L2(IR)⊗ Ylm (12)

and for each element of K, the following decomposition is unique

f =
∑
l,m

flm ⊗ Ylm , flm ∈ L2(IR; dr2∗) (13)

On each C∞0 (IR)⊗ Ylm = Klm ∩ C∞0 (Π)

h = hlm ⊗ 1 , hlm = − d2

dr2∗
+ Vl , Vl = Fe2δ

[
l(l + 1)
r2

+m2 + r−1e−δ d

dr
(Feδ) + ξR

]
(14)

h is easily prolonged to

D(h) =

f =
∑
l,m

flm ⊗ Ylm ∈ K; ∂2
r∗flm ∈ L2(IR; dr2∗);

∑
lm

‖flm‖2L2(IR;dr2
∗)
<∞

 (15)

as
h =

∑
l,m

hlm ⊗ 1 (16)

and is self-adjoint on D(h) by Kato’s theorem. The Vl being positive by (H1), h is strictly positive on D(h).
h is therefore inversible with dense domain and so is µ = h1/2. Let D(µ) be the domain of µ in K

D(µ) = {f ∈ K;µf ∈ K} (17)

and [D(µ)] its completion for the inner product associated with the norm ‖µf‖K. We define the Hilbert
space

H0 = [D(µ)]⊕K (18)

completion of [C∞0 (Π)]2 for the norm

‖ t(f, p)‖2H0
=

∫
Π

{∣∣∣∣ ∂f∂r∗
∣∣∣∣2 + Fe2δ

[
|∇S2f |2

r2
+

(
m2 + r−1e−δ d

dr
(Feδ) + ξR

)
|f |2

]
+ |p|2

}
dr∗dω (19)
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Let us consider
[D(µ2)] = {f ∈ [D(µ)] ; µf ∈ D(µ)} (20)

and the dense subspace of H0

D(H) = [D(µ2)]⊕D(µ) (21)

Then operator H with domain D(H) est skew adjoint on H0. We apply Stone’s theorem and obtain the
following result
Proposition 1.1. Given t(ϕ,ψ) ∈ H0, equation (8) has a unique solution f such that

t(f, ∂tf) ∈ C(IRt,H0) t(f, ∂tf) |t=0 = t(ϕ,ψ)

defined by
t(f, ∂tf) = e−Ht

[
t(ϕ,ψ)

]
Moreover, the linear energy of f is conserved∥∥ t(f, ∂tf)

∣∣
t=T

∥∥
H0

=
∥∥ t(ϕ,ψ)

∥∥
H0

∀T ∈ IR

2 Non linear Klein-Gordon equation

The first task is to define a functional framework suitable to our non linear problem; we observe the
existence of a conserved positive energy: if f is a regular solution of equation (7) with compact support in
[0, T ]t × IRr∗ × S2

ω, we multiply (7) by ∂tf , integrate by parts and we obtain

E(U(T )) = ‖U(T )‖2H0
+

∫
Π

Fe2δ λ

2r2
|f(T )|4dr∗dω = E(U(0)) (22)

where U = t(f, ∂tf). Although we only need to control the solution in H0 and L4 to define E , we want
to estimate the L2 norm of the non linear term, i.e. the L6 norm of f . This is merely to be able to use
Picard’s method which will naturally assure unicity and regularity. It is therefore convenient to introduce
a complete subspace of H0 for which the required Sobolev embedding result holds. We define the Hilbert
space H, completion of

[
C∞0 (]r0, r+[r×S2

ω)
]2 for the norm

∥∥ t(ϕ,ψ)
∥∥2

H =
∫

Π

{∣∣∣∣ ∂ϕ∂r∗
∣∣∣∣2 + F

|∇S2ϕ|2

r2
+ |ϕ|2 + |ψ|2

}
dr∗dω (23)

The hamiltonian form of equation (7) is

∂U

∂t
= −HU − J(U) (24)

where H and h are defined in (10) and

J(U) =
[

0
λFe2δ

r2 |f |2f

]
(25)

We now give the main theorem of this paragraph
Theorem 2.1. Given t(ϕ,ψ) in H, equation (7) has a unique solution such that

t(f, ∂tf) ∈ C(IRt,H) (26)
t(f, ∂tf) |t=0 = t(ϕ,ψ) (27)

Furthermore, for any T ∈ IR
E

(
t(f, ∂tf)

∣∣
t=T

)
= E( t(ϕ,ψ)) (28)

Remark 2.1. The study of asymptotic behavior at the horizon (part 4) will show that for initial data ϕ and
ψ in C∞(IRr∗ ,×S2

ω), equation (7) has a unique solution f ∈ C∞(IRt × IRr∗ × S2
ω) satisfying (27).
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Proof: We define a transformation S on C(IRt;H) by

SU(t) = e−HtU0 −
∫

(0,t)

e−H(t−s)J(U(s))ds; U ∈ C(IRt;H), t ∈ IR (29)

where U0 = t(ϕ,ψ). We wish to find U ∈ C(IRt;H) such that

U = SU in C(IRt;H) (30)

In order to prove that (30) is equivalent to the Cauchy problem for equation (24) and to obtain the
existence and unicity of its solutions, we realize e−Ht as a strongly continuous group of bounded operators
on H and give a Sobolev embedding result.

Lemma 2.1. H is invariant under e−Ht and e−Ht |H is a strongly continuous group of bounded operators
on H satisfying ∥∥e−Ht

∥∥
L(H,H)

≤ C0(1 + |t|) (31)

Proof of lemma 2.1: Since e−Ht is a unitary group on H0, it suffices to prove that for U0 in H(
t 7→ e−HtU0

)
∈ C(IRt,H) (32)

Let V0 ∈ [C∞0 (]r0, r+[×S2)]2, and f be the first component of e−HtV0∥∥e−HtV0

∥∥2

H ≤ C‖V0‖2H + ‖f(t)‖2K

We estimate ‖ϕ(t)‖K by

‖f(t)‖K ≤ ‖f(0)‖K +
∫ t

0

‖∂tf(τ)‖K dτ ≤ ‖V0‖H + |t|‖V0‖H0

which gives ∥∥e−HtV0

∥∥
H ≤ C0(1 + |t|)‖V0‖H (33)

By density, (33) yields the stability of H by e−Ht and (31). There remains to prove the continuity of e−HtU0

at t = 0. We approach U0 by a sequence (Un
0 )n∈IN in

[
C∞0

(
]r0, r+[×S2

)]2
∥∥e−HtU0 − U0

∥∥
H ≤ (1 + C0(1 + |t|)) ‖U0 − Un

0 ‖H +
∥∥Un

0 − e−HtUn
0

∥∥
H �

Proposition 2.1. Given the Riemannian manifold

V =]r0, r+[×S2
ω , ds2 = F (r)−1dr2 + r2dω2 (34)

H1(V ) and L6(V ) being respectively the completions of C∞0
(
]r0, r+[×S2

ω

)
for the norms

‖ϕ‖2H1(V ) =
∫

Π

{
F−1

∣∣∣∣ ∂ϕ∂r∗
∣∣∣∣2 +

∣∣∣∣∇S2ϕ

r

∣∣∣∣2 + |ϕ|2
}
F 1/2r2dr∗dω (35)

‖ϕ‖6L6(V ) =
∫

Π

|ϕ|6F 1/2r2dr∗dω (36)

we have
H1(V ) ↪→ L6(V ) (37)

Proof of proposition 2.1: According to T.Aubin [1], we show that in the domain r ∈]r0, r1], r0 < r1 < r+,
the sectionnal curvatures of V are bounded (see Th. Frankel [9]) and that its injectivity radius is uniformly
bounded by below. In the domain r ≥ r1, norms (35) and (36) are equivalent to the usual H1 and L6 norms
on IR3 for which the embedding result is well known. �

From the previous proposition and lemma we deduce
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Lemma 2.2. J is continuous from H to H and satisfies

∃C1 > 0 ; ∀U, V ∈ H ‖J(U)− J(V )‖H ≤ C1(‖U‖2H + ‖V ‖2H)‖U − V ‖H (38)

Proof of lemma 2.2: Let U =
(
f
g

)
∈ H, proposition 2.1 gives

‖J(U)‖2H ≤ C

∥∥∥∥F 1
4
f

r

∥∥∥∥6

H1(V )

A simple calculation shows∥∥∥∥F 1
4
f

r

∥∥∥∥2

H1(V )

=
∫

Π

{
F−1

∣∣∣∣ ∂

∂r∗

(
F

1
4
f

r

)∣∣∣∣2 +
∣∣∣∣1r∇S2

(
F

1
4
f

r

)∣∣∣∣2 +
∣∣∣∣F 1

4
f

r

∣∣∣∣2
}
F

1
2 r2dr∗dω ≤ C‖U‖2H

and similarly for U, V ∈ H, we get (38). �
We need an analogous lemma on functionnal spaces which will guarantee enough regularity to justify

energy estimates. Let D(H)H be the complete subspace of H defined by

D(H)H = {U ∈ H;HU ∈ H} (39)

with norm
‖U‖2D(H)H

= ‖U‖2H + ‖HU‖2H (40)

Lemma 2.3. There exists a function C∞, continuous and positive on ]r0, r+[2 such that

∀f ∈ C∞0
(
IRr∗ × S2

ω

)
;Supp(f) ⊂ [R1, R2]r × S2

ω ⊂ ]r0, r+[r×S2
ω

‖f‖L∞ ≤ C∞(R1, R2)
[
‖f‖H1(V ) + ‖hf‖K

]
(41)

Proof of lemma 2.3: The compact support of the functions allow us to work in Minkowski space where
the usual Sobolev embedding result

H2(IR3) ↪→ L∞(IR3)

holds. �
An immediate consequence is

Lemma 2.4. J is continuous from D(H)H−comp to itself and there exists a function C2, continuous positive
on ]r0, r+[2 such that

∀U, V ∈ D(H)H−comp, Supp(U) ∪ Supp(V ) ⊂ [R1, R2]r × S2
ω ⊂ ]r0, r+[r×S2

ω

‖J(U)‖D(H)H ≤ C2(R1, R2)[‖U‖H + ‖HU‖H]‖U‖2H (42)

‖J(U)− J(V )‖D(H)H ≤ C2(R1, R2)[‖U‖2D(H)H
+ ‖V ‖2D(H)H

]‖U − V ‖D(H)H (43)

Local solutions of (30) in D(H)H−comp are regular enough
(
H2

comp

(
[0, T ]t × IRr∗ × S2

ω

)
if they exist on

[0, T ]) to justify the integrations by parts necessary to obtain an energy estimate. Theorem 2.1 is then a
standard consequence of (22) and lemma 2.2 and 2.4. �

3 Asymptotic behavior at the horizon

We study the asymptotic behavior of regular solutions of equation (7) at the horizon of the black hole, i.e.
in the neighbourhood of {r = r0}. Even if it means rescaling the time variable, we suppose that δ(r0) = 0.
We need to define new coordinates which enable us to cross the horizon. We choose KRUSKAL-SZEKERES
variables

X =
1
2
eκ0r∗

(
eηκ0t + ηe−ηκ0t

)
, T =

1
2
eκ0r∗

(
eηκ0t − ηe−ηκ0t

)
, η =

r − r0
|r − r0|

, κ0 =
1
2
F ′(r0) (44)
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where

r∗ =
1

2κ0

{
Log|r − r0| −

∫ r

r0

[
1

r − r0
− 2κ0

Feδ

]
dr

}
(45)

Schwarzschild coordinates give two local maps with domains (IRt×]r−, r0[r×S2
ω) and (IRt×]r0, r+[r×S2

ω),
but fail to represent the horizon {r = r0}. Kruskal-Szekeres coordinates define an atlas with a single map
{T + X > 0} × S2

ω and the horizon appears as the caracteristic submanifold {T = X > 0} × S2
ω. A

straightforward calculation shows that equation (7) on IRt × V is equivalent to

∂2f

∂T 2
− ∂2f

∂X2
−A(T,X)∆S2f +B(T,X)f + λA(T,X)|f |2f = 0 (46)

with

A(T,X) = κ−2
0 r−2|F |e−2κ0r∗+2δ , B(T,X) = κ−2

0 |F |e−2κ0r∗+2δ

(
m2 + r−1e−δ ∂

∂r
(Feδ) + ξR

)
(47)

in the domain Ω = {(T,X, ω), X > |T |, ω ∈ S2} which represents the exterior of the black hole in Kruskal-
Szekeres variables. This kind of hyperbolic equation has already been studied by W.Von Wahl [14]. We
solve the Cauchy problem associated to (46) in the neighbourhood of Ω = {(T,X, ω), X ≥ |T |, ω ∈ S2} for
very regular initial data. We obtain the asymptotic behavior of the field when r −→ r0, t −→ +∞ showing
the regularity of the solution f of (46) at the horizon X = |T |.
Theorem 3.1. Given ϕ,ψ in C∞0 (]r0, r+[r×S2

ω), there exists a unique f̂ in C∞(IRs ×S2
ω) such that, for any

asymptotic direction (s, ω) in IRs × S2
ω, the solution f of (7) associated with the initial data t(ϕ,ψ) satisfies

lim
t−→+∞

f(t, r∗ = −t+ s, ω) = f̂(s, ω) , lim
t−→+∞

(∂t − ∂r∗)f(t, r∗ = −t+ s, ω) = 0 (48)

Proof: (H1) and the hypothesis on F and δ yield that A and B can be prolonged to IRT ×IRX as infinitely
differentiable, strictly positive functions which we will still denote by A and B. We solve a Cauchy problem
for an equation of type (46) prolonged to IRT × IRX × S2

ω.

Proposition 3.1. Let A, B and Q be three real functions of two real variables t and x satisfying

A,B,Q ∈ C∞(IRt × IRx) , A > 0 , B ≥ 0 , Q ≥ 0

and

∃D ∈ C (IRt × IRx) such that ∀t, x ∈ IR
∂tQ(t, x) ≤ D(t, x)Q(t, x) (49)

Then for each ϕ ∈ H1
comp(IRx × S2

ω; dx2 + dω2), ψ ∈ L2
comp(IRx × S2

ω; dx2 + dω2) and s ∈ IR, equation

∂2
t f − ∂2

xf −A(t, x)∆S2f +B(t, x)f +Q(t, x)|f |2f = 0 (50)

has one and only one solution f satisfying

f |t=s= ϕ ; ∂tf |t=s= ψ

f ∈ C(IRt,H
1(IRx × S2

ω; dx2 + dω2)) ∩ C1(IRt, L
2(IRx × S2

ω; dx2 + dω2))

Furthermore, if ϕ and ψ belong to C∞0
(
IRx × S2

ω

)
, the solution f of (50) associated to the initial data ϕ, ψ

and to an initial time s ∈ IR belongs to C∞0
(
IRt × IRx × S2

ω

)
.

Proof of proposition 3.1: We study the linear equation associated to (50)

∂2
t f − ∂2

xf −A(t, x)∆S2f +B(t, x)f = 0 (51)
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its hamiltonian form is
∂V

∂t
= −ĤV − P (t)V (52)

where

V =
(

f
∂tf

)
Ĥ =

(
0 −1
−∂2

x 0

)
P (t) =

(
0 0

−A(t, .)∆S2 +B(t, .) 0

)
(53)

We introduice the following Hilbert spaces

k ∈ IN∗ , Hk = Hk(IRx × S2
ω; dx2 + dω2)⊕Hk−1(IRx × S2

ω; dx2 + dω2) (54)
Hx

1 = BL1(IRx)⊕ L2(IRx) (55)
D(Ĥ) = {V̂ ∈ Hx

1 ; ĤV̂ ∈ Hx
1 } (56)

BL1(IRx) being the completion of C∞0 (IRx) for the L2 norm of the first derivative; for R > 0

k ∈ IN∗ Hk
R = {V ∈ Hk;Supp(V ) ⊂ [−R,R]x × S2

ω} (57)
k ∈ IN∗ Hk

R

(
IR× S2; dx2 + dω2

)
=

{
f ∈ Hk

(
IR× S2; dx2 + dω2

)
; Supp(f) ∈ [−R,R]× S2

}
(58)

1 ≤ p ≤ ∞ Lp
R

(
IR× S2; dx2 + dω2

)
=

{
f ∈ Lp

(
IR× S2; dx2 + dω2

)
; Supp(f) ∈ [−R,R]× S2

}
(59)

D(Ĥ)R = {V̂ ∈ D(Ĥ);Supp(V̂ ) ⊂ [−R,R]x} (60)

and eventually
k ∈ IN∗ Hk

comp =
⋃

R>0

Hk
R ; D(Ĥ)comp =

⋃
R>0

D(Ĥ)R (61)

Spaces (57) to (60) are all distribution spaces, thank to the compact support. We establish

Lemma 3.1. There exists a family of bounded operators (U(t, s))t,s∈IR defined on H1
comp for R > 0 such that

∀t, s ∈ IR U(t, s) ∈ L
(
H1

R;H1
R+|t−s|

)
∩ L

(
H2

R;H2
R+|t−s|

)
(62)

∀r, s, t ∈ IR U(r, s)U(s, t) = U(r, t) (63)
∀t ∈ IR U(t, t) = IdH1

comp
(64)

Furthermore, given U0 ∈ Hk
comp, k = 1, 2

U(t, s)U0 ∈ C
(
IRt × IRs;Hk

)
(65)

and for s ∈ IR, Us : t 7→ U(t, s)U0 is the only solution of (52) in C(IRt;H1
comp) satisfying Us(s) = U0.

Proof of lemma 3.1: We decompose equation (51) using (13). We get

∂2
t flm − ∂2

xflm + Cl(t, x)flm = 0 (66)

where
Cl(t, x) = l(l + 1)A(t, x) +B(t, x) (67)

The hamiltonian form of (66) is

∂Vlm

∂t
= −ĤVlm − Pl(t)Vlm , Vlm =

(
flm

∂tflm

)
, Pl(t) =

(
0 0

Cl(t, .) 0

)
(68)

Ĥ is a skew adjoint operator on Hx
1 with dense domain D(Ĥ). e−Ĥt is therefore a strongly continuous one

parameter unitary group on Hx
1 as well as on the successive domains of Ĥ on Hx

1 , such as D(Ĥ) for instance.
Poincaré’s theorem yields for R > 0

D(Ĥ)R ' H2(IRx)R ⊕H1(IRx)R

8



where
Hk(IRx)R =

{
U ∈ Hi(IRx);Supp(U) ⊂ [−R,R]

}
, k ∈ IN

Since Cl ∈ C∞(IRt × IRx) ↪→ C(IRt;H1
loc(IRx)), we get

∀t ∈ IR Pl(t) ∈ L(D(Ĥ)R;D(Ĥ)R) and lim
t− s→ 0

‖Pl(t)− Pl(s)‖L(D(Ĥ)R;D(Ĥ)R) = 0

The Cauchy problem for (68) on D(Ĥ)comp is therefore well posed. Let us now introduice the dense subspace
of H1

R for R > 0

D(Ĥ)R,finite =

U =
∑

finite

Ulm ⊗ Ylm; Ulm ∈ D(Ĥ)R

 (69)

We can define a propagator U on D(Ĥ)R,finite by: for U0 ∈ D(Ĥ)R,finite, R > 0 and for s ∈ IR, t 7→ U(t, s)U0

is the only solution of (52) associated with the initial data U0 and the initial time s. U satisfies

U(t, s) ∈ L
(
D(Ĥ)R,finite;D(Ĥ)R+|t−s|,finite

)
∀R > 0 ∀t, s ∈ IR (70)

U(t, s)U0 ∈ C
(
IRt × IRs;D(Ĥ)R+|t−s|,finite

)
∀R > 0 ∀U0 ∈ D(Ĥ)R,finite (71)

∀t, s, r ∈ IR U(t, s)U(s, r) = U(t, r) (72)
∀t ∈ IR ∀R > 0 U(t, t) = IdD(Ĥ)R,finite

(73)

We need to prolong U to H1
comp. Let U0 ∈ D(Ĥ)R,finite, R > 0 and s ∈ IR, we denote Us : t 7→ U(t, s)U0. If

f is the first component of Us, then

f ∈ H2
loc

(
IRt × IRx × S2

ω; dt2 + dx2 + dω2
)

We can multiply (51) by ∂tf and integrate by parts on Ωs,T =]s, T [t×IRx × S2
ω for any T in IR. Using

the properties of A,B,Q and Poincaré’s inequality, we obtain the existence of a fonction IK, continuous on
IR2 × IR+, strictly positive, such that for T ∈ IR

‖U(t, s)U0‖H1 ≤ IK(s, T,R)‖U0‖H1 ∀t ∈ (s, T ) (74)

Thus, for any R > 0, t, s ∈ IR
U(t, s) ∈ L

(
H1

R;H1
R+|t−s|

)
Furthermore, if U0 ∈ H1

R, R > 0

U(t, s)U0 ∈ C
(
IRt × IRs;H1

R+|t−s|

)
and t 7→ U(t, s)U0 is the only solution of (52) associated with the initial data U0 and the initial time s. For
initial data in H2

R, R > 0, applying ∂x and the generators of the rotation group

L1 = sinϕ
∂

∂θ
+
cosϕ

tgθ

∂

∂ϕ
L2 = −cosϕ ∂

∂θ
+
sinϕ

tgθ

∂

∂ϕ
L3 =

∂

∂ϕ
(75)

to equation (52) yields easily (62) and (65) for k = 2. �
As for the non linear equation (50), its hamiltonian form is

∂V

∂t
= −ĤV − P (t)V −K(t, V ) (76)

where V, Ĥ and P (t) have already been defined for the linear problem and

K

(
t,

(
f
g

))
=

(
0

Q(t, .)|f |2f

)
(77)

Let us now study the continuity of K.

9



Lemma 3.2. Let U ∈ C
(
IRt;Hk

R+|t|

)
, R > 0, k = 1, 2, then

K(t, U(t)) ∈ C
(
IRt;Hk

R+|t|

)
Furthermore, there exists some functions C1, C2 and C3, continuous on IR× IR+ such that

∀U, V ∈ H1
R , ∀t ∈ IR

‖K(t, U)−K(t, V )‖H1 ≤ C1(t, R)
[
‖U‖2H1 + ‖V ‖2H1

]
‖U − V ‖H1 (78)

∀U, V ∈ H2
R , ∀t ∈ IR

‖K(t, U)−K(t, V )‖H2 ≤ C2(t, R)
[
‖U‖2H2 + ‖V ‖2H2

]
‖U − V ‖H2 (79)

‖K(t, U)‖H2 ≤ C3(t, R)‖U‖2H1‖U‖H2 (80)

The proof of lemma 3.3 is very simple. We merely use the fact that the functions are compactly supported
in order to make all the calculations in Minkowski space. Then, we apply the usual Sobolev embedding

H1(IR3) ↪→ L6(IR3) �

The regularity of local H2 solutions allow us to perform an energy estimate. Using Poincaré’s inequality,
(H1) and the hypothesis on A,B and Q, we obtain the existence of a function IK1, continuous and strictly
positive on IR2 × IR+ such that, for U0 ∈ H2

R, R > 0, for s ∈ IR, if the solution Us of (76) associated to U0

and s exists on [s, T ], T ∈ IR, then

IE(Us(t), t) ≤ IK1(s, T,R)IE(U0, s) ∀t ∈ (s, T ) (81)

where

IE
((

f
g

)
, t

)
=

∥∥∥∥(
f
g

)∥∥∥∥2

H1

+
1
2

∫
IR×S2

Q(t, .)|f |4dxdω (82)

Global existence and unicity for H1
comp initial data is a standard consequence of (81) and lemma 3.2 and 3.3.

Furthermore, if U0 ∈ H1
R, R > 0 and s ∈ IR, the only solution Us of (76) associated to U0 and s satisfies for

any T ∈ IR
‖Us(t)‖2H1 ≤ IK1(s, T,R)IE(U0, s) ∀t ∈ [s, T ] (83)

It is a tedious but straightforward calculation to prove

Lemma 3.3. Let k ∈ IN∗

∀t, s ∈ IR ∀R > 0 U(t, s) ∈ L
(
Hk

R;Hk
R+|t−s|

)
(84)

∀U0 ∈ Hk
R , R > 0 U(t, s)U0 ∈ C

(
IRt × IRs;Hk

)
(85)

There exists functions Ck,2 and Ck,3 continuous and strictly positive on IR× IR+ such that, for U, V ∈ Hk
R,

R > 0 and for t ∈ IR

‖K(t, U)−K(t, V )‖Hk ≤ Ck,2(t, R)
[
‖U‖2Hk + ‖V ‖2Hk

]
‖U − V ‖Hk (86)

‖K(t, U)‖Hk ≤ Ck,3(t, R)‖U‖2Hk−1‖U‖Hk (87)

Thus, for initial data ϕ and ψ in C∞0
(
IRx × S2

ω

)
, the solution of (50) is itself very regular and proposition

3.1 is established. �
Let us now consider equation (7) in(t, r∗, ω) variables with initial data ϕ and ψ in C∞

(
]r0, r1[r×S2

ω

)
.

This corresponds for equation (46) in Kruskal-Szekeres variables with an initial time s = 0 and initial data
ϕ1 and ψ1 in C∞

(
]0,+∞[X×S2

ω

)
such that, for X > 0

ϕ1(X) = ϕ(r∗(X)) , ψ1(X) = ψ(r∗(X))
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with
r∗(X) =

1
κ0
Log(X)

Let f1 be the solution of (46) with initial time s = 0 and initial data ϕ1, ψ1. f1 can be prolonged as a C∞
function on IRT × IRX × S2

ω and the solution f of (7) associated with the initial data ϕ, ψ satisfies

f (t(T,X), r∗(T,X), ω) = f1(T,X, ω) ∀(T,X, ω) ∈ Ω

f is therefore C∞ on IRt×IRr∗×S2
ω and we can define its asymptotic profile at the horizon: let f̂ ∈ C∞0 (IRs×S2

ω)
be defined by

f̂(s, ω) = f1(X0, X0, ω) = lim
(T,X) → (X0, X0)

(T,X, ω) ∈ Ω

f1(T,X, ω) where X0 =
1
2
eκ0s (88)

then

f̂(s, ω) = lim
t→ +∞

f(t, r∗ = −t+ s, ω)

Now, for (t, r∗, ω) ∈ IR× IR× S2
ω

(∂t − ∂r∗)f(t, r∗, ω) = κ0 [X(t, r∗)− T (t, r∗)] (∂T − ∂X)f1 (T (t, r∗), X(t, r∗), ω)

Putting r∗ = −t+ s and allowing t to tend to +∞ yields the radiation condition and concludes the proof of
theorem 3.1. �

The same result holds for the Cosmological horizon (if r+ is finite) with an outgoing radiation condition.

4 Asymptotic behavior at infinity

From now on, we assume that r+ = +∞. We study the asymptotic behavior at infinity of regular
solutions of equation (7) in the case m = 0. Even if it means rescaling the time variable, we assume that
δ(+∞) = 0. We need to define a new set of variables in order to cross the spatial infinity. Applying Penrose’s
conform compactification method yields

τ = Arctg(t+ r∗) +Arctg(t− r∗) , ζ = Arctg(t+ r∗)−Arctg(t− r∗) (89)

In Penrose variables, the whole space-time outside the black hole, including the horizon and the spatial
infinity, is mapped into a compact set of IRτ × IRζ × S2

ω. Equation (7) on IRt × IRr∗ × S2
ω becomes

∂2
τf − ∂2

ζf − α(τ, ζ)∆S2f + β(τ, ζ)f + λα(τ, ζ)|f |2f = 0 (90)

with

α(τ, ζ) = Fe2δr−2(cosτ + cosζ)−2 , β(τ, ζ) = Fe2δ(cosτ + cosζ)−2
(
r−1e−δ∂r(Feδ) + ξR

)
(91)

on domain Ω′ =
{
(τ, ζ, ω);−π < τ − ζ < π;−π < τ + ζ < π;ω ∈ S2

}
. The only difference between equation

(90) and (50) lies in the regularity of α and β. The spatial infinity is a true singularity of metric (1) and
prevents us from prolonging α and β as regular functions on the whole (τ, ζ) plane. This lack of regularity
appears in the asymptotic behavior
Theorem 4.1. Given ϕ,ψ in C∞0 (]r0, r+[×S2

ω), there exists a unique f̂∞ in
(
C0 ∩H1/2

loc

)
(IRs;L2(S2

ω)) such
that, for any real number s, the solution f of (7) with m = 0 associated with the initial data ϕ,ψ satisfies

lim
t−→+∞

f(t, r∗ = t− s, .) = f̂∞(s, .) and lim
t−→+∞

(∂t + ∂r∗)f(t, r∗ = t− s, .) = 0 in L2(S2
ω) (92)
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Proof: Wishing to avoid pathological behaviors at the horizon or at the corners of the diamond, we limit
our study to Ω′ε defined for ε > 0 by

Ω′ε =
{
(τ, ζ, ω);−π < τ − ζ ≤ π − ε ;−π + ε ≤ τ + ζ < π ;Min (|τ + ζ|, |τ − ζ|) ≤ π − ε ;ω ∈ S2

}
(93)

We define prolongations of α and β outside Ω′ε as follows: for (τ, ζ) /∈ Ω′ε

γ(τ, ζ) =

 γ(τ1, ζ)
γ(0,−π + ε)
γ

(
ε
2 , π −

ε
2

) if
if
if

−π + ε ≤ ζ ≤ π − ε
2

ζ ≤ −π + ε
ζ ≥ π − ε

2

(94)

where γ is either α or β and (τ1, ζ) is the projection parallel to IRτ of (τ, ζ) onto the boundary of Ω′ε. We
denote by αε and βε the prolonged functions. It is a very tedious task but with no major difficulty to verify

αε > 0 , βε ≥ 0 on IRτ × IRζ

αε, βε ∈ C
(
IRτ ;H1

loc(IRζ)
)
∩ C

(
IRζ ;H1

loc(IRτ )
)

(
∂α

∂τ

)+

,

(
∂β

∂τ

)+

∈ L∞loc

(]
−ε
2
,+∞

[
τ

× IRζ

)
where

(
∂αε

∂τ

)+
and

(
∂βε

∂τ

)+

are the positive parts of ∂αε

∂τ and ∂βε

∂τ .

Remark 4.1. There obviously exists D ∈ C
(]
− ε

2 ,+∞
[
τ
× IRζ

)
such that almost everywhere on

]
− ε

2 ,+∞
[
τ
×

IRζ

∂αε

∂τ
(τ, ζ) ≤ D(τ, ζ)αε(τ, ζ)

We wish to prove a general result similar to proposition 3.1 with functions

A,B,Q ∈ C
(
IRt;H1

loc(IRx)
)
∩ C

(
IRx;H1

loc(IRt)
)

The energy estimates will require the time derivatives of these functions to be locally bounded by above, but
it is only true for αε and βε on

]
− ε

2 ,+∞
[
τ
× IRζ . The domain

]
−∞, ε

2

[
τ
× IRζ is dealt with by changing τ

in −τ which changes the signs of ∂αε

∂τ and ∂βε

∂τ . We give a general theorem on IRt× IRx which can be applied
to any open domain ]t0, t1[t×IRx, −∞ ≤ t0 < t1 ≤ +∞.

Proposition 4.1. Let A,B and Q be three real functions of two real variables t and x such that

A,B,Q ∈ C
(
IRt;H1

loc(IRx)
)
∩ C

(
IRx;H1

loc(IRt)
)

A > 0 B ≥ 0 Q ≥ 0

and (
∂A

∂t

)+

,

(
∂B

∂t

)+

∈ L∞loc (IRt × IRx) (95)

Assume moreover that there exists D ∈ C (IRt × IRx) such that

∂Q

∂t
≤ DQ almost everywhere on IRt × IRx (96)

then the global existence and unicity result of proposition 3.1 holds.

Proof of proposition 4.1: The proof of proposition 3.1 was made of four essential parts:
1. Unique global solutions for the Cauchy problem on one spherical harmonic.
2. Extension to H1

comp of the propagator thus obtained.
3. Unique local solutions in H1

comp for the non linear Cauchy problem.
4. Global solutions in H1.
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Stages 1 and 3 only require A,B ∈ C
(
IRt;H1

loc(IRx)
)

and Q ∈ C(IRt × IRx). On the other hand, stages 2
and 4 consist merely of energy estimates but A,B and Q are not regular enough to justify the integrations
by parts. Let

γ ∈ C∞0 (IRt × IRx) ; Supp(γ) ⊂ B(0, 1) ; 0 ≤ γ ≤ 1 on IRt × IRx ;
∫

IR2
γdtdx = 1

where B(0, 1) is the ball with centre 0 and radius 1 in IRt × IRx. For n ∈ IN∗, we introduce

γn ∈ C∞0 (IRt × IRx) , γn(t, x) = n2γ(nt, nx)

and we define regularized functions

An = A ∗ γn , Bn = B ∗ γn , Qn = Q ∗ γn

They satisfy
An, Bn, Qn ∈ C∞ (IRt × IRx) An > 0 , Bn ≥ 0 , Qn ≥ 0

and
∂Qn

∂t
(t, x) ≤ Dn(t, x)Qn(t, x) ∀t, x ∈ IR (97)

where Dn, defined by

Dn(t, x) = Max
|(τ, ζ)| ≤ 1

n

|D(t+ τ, x+ ζ)|

converges uniformly to |D| on any compact set of IRt × IRx. With An, Bn, Qn we associate equations

∂Un

∂t
= −ĤUn − Pn(t)Un , Pn(t) =

(
0 0

−An(t, .)∆S2 +Bn(t, .) 0

)
(98)

∂Un

∂t
= −ĤUn − Pn(t)Un −Kn(t, Un) , Kn

(
t,

(
f
g

))
=

(
0

Qn(t, .)|f |2f

)
(99)

and with A,B,C equations
∂U

∂t
= −ĤU − P (t)U (100)

∂U

∂t
= −ĤU − P (t)U −K(t, U) (101)

where Ĥ, P and K follow the definitions of proposition 3.1. We first consider the linear problem. Given
U0 ∈ D(Ĥ)R,finite, R > 0, we denote by Us (resp. Un

s ) the solution of (98) (resp. 100) in C(IRt;H1)
associated with the initial data U0 and initial time s. Proposition 3.1 gives for n ∈ IN∗

∀T ∈ IR ∀t ∈ (s, T ) ‖Un
s (t)‖H1 ≤ IKn(s, t, R)‖U0‖H1 (102)

with
IKn ∈ C(IR2 × IR+; ]0 +∞[)

We check very easily that

∀t ∈ IR lim
n→ +∞

Un
s (t) = Us(t) in H1

and

∀T ∈ IR lim
n→ +∞

IKn(s, T,R) = IK∞(s, T,R) < +∞

thus, for T ∈ IR
‖Us(t)‖H1 ≤ IK∞(s, T,R)‖U0‖H1 ∀t ∈ (s, T ) (103)
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As for the non linear problem, let U0 ∈ H1
R, R > 0 and s ∈ IR. We denote by Us a local solution in

C
(
[s, T ];H1

)
, T ∈ IR of (101) associated with U0 and s. Proposition 3.1 gives for n ∈ IN∗

‖Un
s (t)‖H1 ≤ IKn

1 (s, T,R)IEn(U0, s) ∀t ∈ (s, T ) (104)

with
IKn

1 ∈ C(IR
2 × IR+; ]0,+∞[)

and
IEn(U0, s) = ‖U0‖2H1 +

1
2

∫
IR×S2

Qn(s, x)|ϕ(x, ω)|4dxdω

ϕ being the first component of U0. When n tends to +∞, we have

lim
n→ +∞

IEn(U0, s) = IE(U0, s) , lim
n→ +∞

IKn
1 (s, T,R) = IK∞

1 (s, T,R) < +∞

using the continuity of the non linear term of both equations (99) and (101) in H1 we get

∀t ∈ (s, T ) lim
n→ +∞

Un
s (t) = Us(t) in H1

This yields for t ∈ (s, T )
∀t ∈ (s, T ) ‖Us(t)‖H1 ≤ IK∞

1 (s, T,R)IE(U0, s)

and concludes the proof of proposition 4.1. �
Let us now consider for equation (7) in (t, r∗, ω) variables, initial data ϕ,ψ in C∞0

(
]r0, r+[r×S2

ω

)
.

This means for equation (90) in Penrose variables an initial time s = 0 and initial data ϕ1, ψ1 dans
C∞0

(
]− π, π[ζ×S2

ω

)
defined by

ϕ1(ζ) = ϕ(r∗(ζ)) ψ1(ζ) = ψ(r∗(ζ)) r∗(ζ) = 2tg
(
ζ

2

)
ζ ∈ IR

We know from proposition 4.1 that for any ε > 0, (90) has in Ω′ε a unique solution fε which can be prolonged
to IRτ × IRζ × S2

ω as an element of

C
(
IRτ ;H1

loc

(
IRζ × S2

ω; dζ2 + dω2
))
∩ C1

(
IRτ ;L2

loc

(
IRζ × S2

ω; dζ2 + dω2
))

such that

fε|τ=0 = ϕ1
∂fε

∂τ

∣∣∣∣
τ=0

= ψ1

Thus, if for ε > 0 we consider

Σε =
{

(τ, ζ); τ = π − ζ,
ε

2
≤ ζ ≤ π − ε

2

}
endowed with the metric induced by the carthesian metric on IRτ × IRζ

ds2Σε
= 2dζ2

the trace of fε on Σε × S2
ω satisfies

fε|Σε×S2
ω
∈

(
C0 ∩H1/2

) (
Σε, L

2(S2
ω)

)
and by unicity, if ε1 > ε

fε|Σε1×S2
ω

= fε1 |Σε1×S2
ω
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Putting for s ∈ IR and ε > 0 small enough

f̂∞(s, .) = fε|Σε×S2
ω

(π
2

+Arctg(s),
π

2
−Arctg(s), .

)
we define in a unique way from the initial data ϕ,ψ a function

f̂∞ ∈
(
C0 ∩H1/2

loc

) (
IRs, L

2(S2
ω)

)
and for s ∈ IR, f̂∞ satisfies

f̂∞(s, .) = lim
t→ +∞

f(t, r∗ = t− s, .) in L2(S2
ω)

where f is the solution of (7) associated to ϕ,ψ.
Then, we have to prove some regularity results before verifying the radiation condition. For ε > 0, fε

satisfies
∂2fε

∂τ2
− ∂2fε

∂ζ2
− αε(τ, ζ)∆S2fε + βε(τ, ζ)fε + λαε(τ, ζ)|fε|2fε = 0 (105)

Applying the generators of the rotation group to (105) yields

∆S2fε ∈ C
(
IRτ ;L2

(
IRζ × S2

ω

))
(106)

We apply cos2
(

τ+ζ
2

) (
∂
∂τ + ∂

∂ζ

)
to (105). (106) and the asymptotic behaviors of αε and βε induced by the

hypothesis on F and δ give

cos2
(
τ + ζ

2

) (
∂

∂τ
+

∂

∂ζ

)
fε ∈ C

([
−π +

ε

2
, π − ε

2

]
τ

;H1(IRζ × S2
ω)

)
(107)

The limitation of the temporal domain is due to the choice of prolongation for α and β but is of no influence
whatsoever on the final result. (107) yields the existence of a unique function

ĝ∞ ∈
(
C0 ∩H1/2

loc

) (
IRs;L2(S2

ω)
)

such that, for s ∈ IR

lim
t→ +∞

(
∂

∂t
+

∂

∂r∗

)
f(t, r∗ = t− s, .) = ĝ∞(s, .) in L2(S2

ω)

The last task is to prove that ĝ∞ = 0. We know that

cos2
(
τ + ζ

2

) ∥∥∥∥(
∂

∂τ
+

∂

∂ζ

)
fε

∥∥∥∥
L2(S2

ω)

∈ C
(]
−π +

ε

2
, π − ε

2

[
× IRζ

)
and ∥∥∥∥(

∂

∂τ
+

∂

∂ζ

)
fε

∥∥∥∥
L2(S2

ω)

∈ C
([
−π +

ε

2
, π − ε

2

]
τ

;L2(IRζ)
)

Furthermore, fε is C∞ in the interior of Ω′ε so that for τ ∈
]
−π + ε

2 , π −
ε
2

[
, there exists ζτ < π− τ such that∥∥∥∥(

∂

∂τ
+

∂

∂ζ

)
fε(τ, .)

∥∥∥∥
L2(S2

ω)

∈ C ([ζτ , π − τ [)

We remark that if u ∈ L2(IR) ∩ C([x0, π[), x0 < π and cos2
(

x
2

)
u(x) is continuous in π, then(

cos2
(x

2

)
u(x)

)∣∣∣
x=π

= 0
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Thus ∥∥∥∥cos2 (
τ + ζ

2

) (
∂

∂τ
+

∂

∂ζ

)
fε

∥∥∥∥
L2(S2

ω)

= 0 for ζ = π − τ − π +
ε

2
< τ < π − ε

2

This yields ĝ∞ ≡ 0 and concludes the proof of theorem 4.1. �

Conclusion

The results described in this paper are a first step to take up difficult open problems such as: asymptotic
behavior at the Cauchy horizon, asymptotic behavior and existence of wave operators at infinity for massive
fields. They require a very sharp analysis of the linear propagator which remains to be done.
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