
Commun. in PDE 22 (1997), 3&4, p. 465-502.

GLOBAL EXTERIOR CAUCHY PROBLEM FOR

SPIN 3/2 ZERO REST-MASS FIELDS IN THE

SCHWARZSCHILD SPACE-TIME

Jean-Philippe Nicolas
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1 Introduction

Spin 3/2 massless fields are of particular interest in two important domains of mathematical physics.
Firstly in supersymmetry, a theory of gravitation with spin 3/2 source which studies intensively
Einstein’s vacuum equations coupled to the Rarita-Schwinger system (a particular form of spin 3/2
field equations), secondly in twistor theory where twistors, in flat space-time, can be interpreted as
charges for such fields. This is due to the crucial role they seem to play in general relativity. Indeed,
if we consider the Dirac equation for the first potential of a spin 3/2 zero rest-mass field

∇AA′σC
A′B′ = 0, σC

A′B′ = σC
(A′B′), (1)

the vanishing of the Ricci curvature is the consistency condition for such an equation in curved
space-time (see for example [2]). Such a close connection with Einstein’s vacuum equations is quite
remarquable. However, spin 3/2 fields have not to this day been studied from the point of view
of hyperbolic partial differential equations. It is the purpose of this paper to set up a technical
basis which will allow further analytic investigations in the future. We choose a particular Ricci-flat
space-time : the Schwarzschild black-hole, on which we solve the global Cauchy problem for equation
(1) for solutions with minimum regularity. This study is a first step towards the understanding of
more difficult questions like the development of a time-dependent scattering theory for spin 3/2
fields on black-hole space-times. Besides, as mentionned above, it is related to an important issue in
twistor theory : the interpretation of twistors as spin 3/2 charges. It is known (see [10]) that using
a topological construction in flat space-time, one can give an alternative definition of a twistor as a
charge for a spin 3/2 field. It is also known that such a construction in general Ricci-flat space-times
has to be impossible. But it is not clear where the obstruction should arise in the construction itself.
From [10], we know that this obstruction can be of two possible natures : either topological, no more
will be said about this aspect here, or analytic, in which case it would be some pathological behavior
of the propagator of the first potential modulo gauge. Solving the Cauchy problem for equation (1)
in Schwarzschild’s space-time will give us the beginning of an answer to this conundrum.

The article is divided as follows : in part 2, we give a general description of spin 3/2 field
equations in flat and Ricci-flat space-times. In the third part, we describe in the Schwarzschild
case the procedure given by the Newman-Penrose formalism for translating spinor equations into a
form more suitable to a PDE-type analysis; this description is done in the simple case of the Dirac
equation. Then, we apply this procedure to spin 3/2 equations. We obtain a system of coordinate-
dependent partial differential equations for which we solve the global L2-Cauchy problem in part 4.
In this last part, the method is similar to what can be found in [1] and [9].
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2 Spin 3/2 zero rest-mass fields in flat and Ricci-flat space-
times

Wave equations with arbitrary spin were first introduced by P.A.M. Dirac [4] in 1936, using the
fundamental relativistic relation between energy and momentum for a free particle with rest-mass
m :

p2
t − p2

x − p2
y − p2

z −m2 = 0

where pt denotes the energy of the particle and px, py, pz the three components of its momentum.
His main purpose, as in the case of the electron wave-equation, was to obtain first order systems
which make the application of Lorentz transformations straightforward. For a single particle of mass
m and spin s, he defined a finite sequence of spinors describing the field and its successive potentials.
He also proposed a method for taking into account the electromagnetic field. Following his work,
M. Fierz and W. Pauli [5] discovered that his method led to inconsistent equations as soon as the
spin was greater than 1. Keeping Dirac’s equations in the force-free case, they introduced in the
Lagrangian auxiliary tensors (for integral spin) or spinors (for half-integral spin) of lower rank and
derived their equations from a variation principle without having to introduce extra conditions. W.
Rarita and J. Schwinger [14] then found an alternative formalism for the description of particles
with half-integral spin and gave a detailed description of the spin 3/2 case. They introduced a new
Lagrangian, without auxiliary quantities, which anyway enabled them to take the electromagnetic
field into account. A particularly interesting feature of their work is the fact that they did not
describe spin 3/2 particles as fields but as the first potential of the field modulo gauge, which is
exactly what we have to do in curved space-times.

In 1965, R. Penrose [11] described Dirac’s equations for massless particles in the framework of
2-spinor formalism where they have a particularly synthetic expression. In the case of spin 3/2 zero
rest-mass particles in Minkowski space-time, Dirac’s equations can be expressed as follows : the field
is described by a valence-3 spinor ψ satisfying

ψA′B′C′ = ψ(A′B′C′), ∇AA′ψA′B′C′ = 0. (2)

Locally at least, there exists a potential σC
A′B′ such that

σC
A′B′ = σC

(A′B′), ∇AA′σC
A′B′ = 0 (3)

and
ψA′B′C′ = ∇CC′σ

C
A′B′ . (4)

The gauge freedom for the choice of σC
A′B′ is given by

σC
A′B′ 7−→ σC

A′B′ +∇C
B′πA′ , (5)

πA′ being a solution of Weyl’s neutrino equation (helicity +1/2)

∇AA′πA′ = 0. (6)

Note that ∇C
B′πA′ is symmetrical in A′, B′ if and only if πA′ satisfies the Weyl equation. Indeed,

∇C
B′πA′ = ∇C

(B′πA′) +∇C
[B′πA′] = ∇C

(B′πA′) +∇CC′πC′εA′B′ .

We can also find, locally, a second potential ρBC
A′ satisfying

ρBC
A′ = ρ

(BC)
A′ , ∇AA′ρBC

A′ = 0 (7)

and
σC

A′B′ = ∇BB′ρBC
A′ (8)
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with the gauge freedom

ρBC
A′ 7−→ ρBC

A′ +∇B
A′ω

C − iεBCπA′ , ∇BA′ω
B = −2iπA′ . (9)

The coefficients in the previous line are chosen so that, when one considers for the gauge quantities
ωA and πA′ the gauge transformations which leave the potentials unchanged, the new kind of gauge
quantities exhibited will satisfy the twistor equation. Eventually, there is a third potential χABC ,
which is a Hertz-type potential; it doesn’t satisfy a first order wave equation but is a solution of the
usual second order wave equation. Moreover, it is symmetric, thus

χABC = χ(ABC), �χABC = 0 (10)

where
� = ∇AA′∇AA′ (11)

and also
ρBC

A′ = ∇AA′χ
ABC . (12)

Note that the field and the first two potentials also satisfy

�ψA′B′C′ = 0, �σC
A′B′ = 0, �ρBC

A′ = 0. (13)

The Rarita-Schwinger description of spin 3/2 massless fields takes only into account the first potential
σC

A′B′ and makes no assumption about its symmetry. In this paper, we consider only the force-free
case and we adopt the Dirac form.

The generalization of these equations to curved space-times requires caution. For zero rest-mass
fields with spin s > 1, one needs to take account of Buchdahl’s consistency conditions (see [2], [12])
which are algebraic conditions relating the solutions of the field equations to the conformal curvature
(Weyl spinor) of the manifold. The case s = 3/2 has this remarkable feature that the vanishing of
the Ricci curvature is the condition for a potential σC

A′B′ to be consistent in a curved space-time
and we see that the zero rest-mass equations for this value of s are tied up with Einstein’s vacuum
equations. However, the first order wave-equations satisfied in the Minkowski case by ψA′B′C′ and
ρBC

A′ are now inconsistent. Even if we tried to define the field from its first potential by

ψA′B′C′ = ∇CC′σ
C
A′B′ ,

we would find that the quantity thus obtained is not invariant under a gauge transformation of σ
and therefore the definition is not satisfactory. It turns out the only description of the field we have
access to is an indirect one, as the first potential σ modulo its gauge freedom, which coincides with
the field derived from σ in flat space-time but replaces it on a curved Ricci-flat background. This is
a Rarita-Schwinger type description of the field. For more details, see for example [10].

In summing up, the system we mean to study is

∇AA′σC
A′B′ = 0, σC

A′B′ = σC
(A′B′) (14)

together with the gauge freedom

σC
A′B′ 7−→ σC

A′B′ +∇C
B′πA′ , ∇AA′πA′ = 0. (15)

We also have the second potential ρBC
A′ satisfying

ρBC
A′ = ρ

(BC)
A′ , σC

A′B′ = ∇BB′ρBC
A′ (16)

with its gauge freedom

ρBC
A′ 7−→ ρBC

A′ +∇B
A′ω

C − iεBCπA′ , ∇BA′ω
B = −2iπA′ . (17)

ρBC
A′ no longer satisfies a first order wave equation and therefore we also lose the Hertz-type potential.

Note that system (14) has 8 equations for only 6 independent unknowns, but one can reexpress two
equations as constraints which are conserved by the evolution.
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Remark 2.1 It is not our purpose here to study the concept of first potential modulo gauge which is
really an element of a sheaf cohomology class. We are only interested in studying the propagation of
this somewhat strange quantity. The gauge being a simple Weyl neutrino field, it is known to have
a “well-behaved” propagator on Ricci-flat space-times. Therefore, it is the potential itself, its gauge
freedom left aside, on which we will focus our attention.

Notations : We use essentially the same notations as in [12], [13] : abstract spinor indices are
denoted by light-face sloping capital latin letters, numerical spinor indices are denoted by bold-face
upright capital latin letters and take their values in {0, 1}; abstract tensor labels are represented by
little light-face sloping latin letters and correspond to a pair of spinor indices, one unprimed the other
primed, clumped together. We use bold-face upright little latin letters for numerical tensor labels,
which are not composite indices and take their values in {0, 1, 2, 3}. Numerical indices referring
to a null tetrad take their values in {1, 2, 3, 4} and are labelled by little latin letters enclosed in
parentheses. Brackets on each side of a group of indices denote symmetrization and square brackets
correspond to skew-symmetrization.

Let (M, g) be a Riemannian manifold, C∞0 (M) denotes the set of C∞ functions with compact
support in M , Hk(M, g), k ∈ IN is the Sobolev space, completion of C∞0 (M) for the norm

‖f‖2Hk(M) =
k∑

j=0

∫
M

〈
∇jf,∇jf

〉
dµ,

where ∇j , dµ and <,> are respectively the covariant derivatives, the measure of volume and the
hermitian product associated with the metric g. We write L2(M, g) = H0(M, g).

The 2-dimensional euclidian sphere S2
ω, ω = (θ, ϕ), is endowed with its usual metric

dω2 = dθ2 + sin2 θdϕ2 , 0 ≤ θ ≤ π , 0 ≤ ϕ < 2π.

3 Application of the Newman-Penrose formalism to the tran-
slation of spin 1/2 and 3/2 equations in the Schwarzschild
case

In the manifolds of general relativity, the translation of spinor field equations into a coordinate
dependent form relies essentially on the choice of a null tetrad. Associated with a spin-frame, such a
tetrad can be used to define the Infeld-Van der Waerden symbols; then, one can express the covariant
derivative of spinor fields ∇AA′ in terms of partial derivatives in the coordinate basis.

On the manifold IRt×]0,+∞[r×S2
ω, we introduce the coordinate basis gaa. The relation to the

more usual geometrical notations is given by

g0
a ≡ ∂

∂t
, g1

a ≡ ∂

∂r
, g2

a ≡ ∂

∂θ
, g3

a ≡ ∂

∂ϕ
. (18)

The associated covariant dual basis is denoted by ga
a. The Schwarzschild metric on our manifold

has the form
gabdx

adxb = Fdt2 − F−1dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(19)

where F (r) = 1− 2M/r, M being the mass of the black-hole and r0 = 2M the radius of the black-
hole. We can, without loss of generality, assume 2M = 1 and F = 1 − 1/r. This can be obtained
simply by multiplying the metric by the conformal weight 1/(2M)2 and replacing t and r by t/(2M),
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r/(2M). The tetrad defined by

la =
1√
2

(
F−1/2g0

a + F 1/2g1
a
)
, (20)

na =
1√
2

(
F−1/2g0

a − F 1/2g1
a
)
, (21)

ma =
1

r
√

2

(
g2

a +
i

sin θ
g3

a

)
, (22)

ma =
1

r
√

2

(
g2

a − i

sin θ
g3

a

)
, (23)

is a null tetrad satisfying the orthonormality conditions

lana = 1 , mama = −1. (24)

It is chosen so that the “extent” of all the vectors is the same, where we define the extent of a vector
as

‖V ‖ = |gab|V aV b. (25)

The associated null covectors are

la = gabl
b =

1√
2

(
F 1/2ga

0 − F−1/2ga
1
)
, (26)

na = gabn
b =

1√
2

(
F 1/2ga

0 + F−1/2ga
1
)
, (27)

ma = gabm
b =

−r√
2

(
ga

2 + i sin θga
3
)
, (28)

ma = gabm
b =

−r√
2

(
ga

2 − i sin θga
3
)
. (29)

Using this null tetrad, we convert the Dirac-Weyl electron wave equation into a system of par-
tial differential equations and check that we find the standard form of the Dirac equation on the
Schwarzschild metric. To this purpose, we begin by calculating the Infeld-Van der Waerden symbols
and the spin coefficients.

Considering the null tetrad la, na,ma,ma as being associated with a spin-frame εA
0 = oA, εA

1 = ιA,
i.e.

la = oAoA′ , na = ιAιA
′
, ma = oAιA

′
, ma = ιAoA′ , (30)

the Infeld-Van der Waerden symbols are defined by

gAA′
a =

(
la ma

ma na

)
, ga

AA′
=

(
na −ma

−ma la

)
. (31)

Replacing the values of the components of the null vectors la, ma, ma, na in the previous expressions,
we get

gAA′
0 =

F−1/2

√
2

(
1 0
0 1

)
, gAA′

1 =
F 1/2

√
2

(
1 0
0 −1

)
, (32)

gAA′
2 =

1
r
√

2

(
0 1
1 0

)
, gAA′

3 =
1

r
√

2 sin θ

(
0 i
−i 0

)
, (33)

g0
AA′

=
F 1/2

√
2

(
1 0
0 1

)
, g1

AA′
=
F−1/2

√
2

(
1 0
0 −1

)
, (34)

g2
AA′

=
r√
2

(
0 1
1 0

)
, g3

AA′
=
r sin θ√

2

(
0 −i
i 0

)
. (35)
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Then, we calculate the spin-coefficients of the Newman-Penrose formalism :

κ = γ311, ρ = γ314, ε = 1
2 (γ211 + γ341),

σ = γ313, µ = γ243, γ = 1
2 (γ212 + γ342),

λ = γ244, τ = γ312, α = 1
2 (γ214 + γ344),

ν = γ242, π = γ241, β = 1
2 (γ213 + γ343).

(36)

The Ricci rotation-coefficients γ(i)(j)(k) are defined by

γ(i)(j)(k) =
1
2

(
λ(i)(j)(k) + λ(k)(i)(j) − λ(j)(k)(i)

)
(37)

where
λ(i)(j)(k) = e(j)a,b

(
e(i)

ae(k)
b − e(k)

ae(i)
b
)
, (38)

e(i)
a denoting the components of the elements of the null tetrad :

e1
a = la , e2

a = na , e3
a = ma , e4

a = ma. (39)

The notation ,a corresponds to the derivation with respect to the a-th variable. Due to the anti-
symmetry of λ(i)(j)(k) in i, k, we have 24 coefficients to evaluate instead of 64. Among these, the
non-zero coefficients are

λ211 = λ221 =
F ′F−1/2

2
√

2
, λ432 = −λ243 = −λ431 = λ143 =

F 1/2

r
√

2
, (40)

λ443 = −λ433 =
cot θ
r
√

2
. (41)

Whence the values of the spin-coefficients :

κ = σ = λ = τ = ν = π = 0, (42)

ρ = µ = −F
1/2

r
√

2
, ε = γ =

F ′F−1/2

4
√

2
, β = −α =

cot θ
2r
√

2
. (43)

We now use the previous calculations to rewrite in terms of partial derivatives the Dirac-Weyl
equation, for an electron of mass m : ∇A

A′φA = µχA′ , µ =
(
~
√

2
)−1

m,

∇A′

A χA′ = µφA.

(44)

For the first equation, we have

∇A
A′φA = εAB∇BA′φA = µχA′ .

The components of εAB∇BA′φA in the spin-frame oA, ιA are

ΦA′ = εA′
A′εAB∇BA′φA = εABΨABA′ ,

ΨABA′ denoting the components of ∇BA′φA in the spin-frame, i.e.

ΨABA′ = εA′
A′εA

AεB
B∇BA′φA .
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Using coordinate partial derivatives and the spin-coefficients, these components can be expressed in
the form (see [12])

ΨABA′ = gBA′
bφA,b − φA0γBA′A

A0 (45)

where the γBA′A
A0 are the spin-coefficients arranged in the following manner

γAB′C
D =

D 0 1 0 1
C 0 0 1 1

AB′

0 0′ ε −κ π −ε
1 0′ α −ρ λ −α
0 1′ β −σ µ −β
1 1′ γ −τ ν −γ

(46)

The two components Φ0′ and Φ1′ have the form

Φ0′ = Ψ010′ −Ψ100′ , Φ1′ = Ψ011′ −Ψ101′

and we only have to evaluate the terms Ψ010′ , Ψ100′ , Ψ011′ and Ψ101′ .

Ψ010′ = g10′
2φ0,θ + g10′

3φ0,ϕ − φ0γ10′0
0 − φ1γ10′0

1

=
1√
2

{(
1
r

∂

∂θ
− i

r sin θ
∂

∂ϕ

)
φ0 +

cot θ
2r

φ0 −
F 1/2

r
φ1

}
,

Ψ100′ = g00′
0φ1,t + g00′

1φ1,r − φ0γ00′1
0 − φ1γ00′1

1

=
1√
2

{(
F−1/2 ∂

∂t
+ F 1/2 ∂

∂r

)
φ1 +

F ′F−1/2

4
φ1

}
,

Ψ011′ = g11′
0φ0,t + g11′

1φ0,r − φ0γ11′0
0 − φ1γ11′0

1

=
1√
2

{(
F−1/2 ∂

∂t
− F 1/2 ∂

∂r

)
φ0 −

F ′F−1/2

4
φ0

}
,

Ψ101′ = g01′
2φ1,θ + g01′

3φ1,ϕ − φ0γ01′1
0 − φ1γ01′1

1

=
1√
2

{(
1
r

∂

∂θ
+

i

r sin θ
∂

∂ϕ

)
φ1 +

cot θ
2r

φ1 +
F 1/2

r
φ0

}
.

Thus, we can now write equation
∇A

A′φA = µχA′

in terms of partial derivatives, which gives us two partial differential equations

−F−1/2 ∂

∂t
φ1 − F 1/2

(
∂

∂r
+

1
r

+
F ′

4F

)
φ1 +

1
r

(
∂

∂θ
+

1
2

cot θ
)
φ0

− i

r sin θ
∂

∂ϕ
φ0 = µ

√
2χ0′ , (47)

F−1/2 ∂

∂t
φ0 − F 1/2

(
∂

∂r
+

1
r

+
F ′

4F

)
φ0 −

1
r

(
∂

∂θ
+

1
2

cot θ
)
φ1

− i

r sin θ
∂

∂ϕ
φ1 = µ

√
2χ1′ . (48)

As for the second equation
∇A′

A χA′ = εA′B′
∇AB′χA′ = µφA,
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we put
ΦA = εA

A∇A′

A χA′ = εA
AεA′

A′εB′
B′
εA

′B′∇AB′χA′ = εA
′B′ΨAA′B′ .

As before, ΨAA′B′ can be expressed in the form (see [12])

ΨAA′B′ = gAB′
aχA′,a − χA′

0
γAB′A′

A′
0 (49)

and the components of the spinor γAB′C′
D′

, complex-conjugate of γBA′C
D, are given by

γAB′C′
D′

= γBA′C
D. (50)

After the same type of calculations as before, we obtain the following partial differential form of
our second equation :

−F−1/2 ∂

∂t
χ1′ − F 1/2

(
∂

∂r
+

1
r

+
F ′

4F

)
χ1′ +

1
r

(
∂

∂θ
+

1
2

cot θ
)
χ0′+

+
i

r sin θ
∂

∂ϕ
χ0′ = µ

√
2φ0 , (51)

F−1/2 ∂

∂t
χ0′ − F 1/2

(
∂

∂r
+

1
r

+
F ′

4F

)
χ0′ −

1
r

(
∂

∂θ
+

1
2

cot θ
)
χ1′

+
i

r sin θ
∂

∂ϕ
χ1′ = µ

√
2φ1 . (52)

If we introduce the basis of Dirac matrices

γ0 = i

(
0 σ0

−σ0 0

)
, γα = i

(
0 σα

σα 0

)
α = 1, 2, 3, (53)

σα, α = 0, 1, 2, 3, denoting the Pauli spin-matrices

σ0 =
(

1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
, (54)

putting
u1 = χ0′ , u2 = χ1′ , , u3 = φ1, u4 = −φ0, (55)

we see that the four-spinor
Ψ = t (u1, u2, u3, u4) (56)

satisfies the usual massive Dirac equation (see [9]){
iF

−1
2 γ0 ∂

∂t
+ iF

1
2 γ1

(
∂

∂r
+

1
r

+
F ′

4F

)
+
i

r
γ2

(
∂

∂θ
+

1
2

cot θ
)

+
i

r sin θ
γ3 ∂

∂ϕ
− µ

√
2
}

Ψ = 0 (57)

for a particle of mass µ
√

2 and spin 1/2 on the Schwarzschild metric. The scaling of the mass is due
to the choice of extent for the vectors of the null tetrad. Multiplying each null vector by ~−1, we
obtain the same equation with the right mass m.

We now apply the method described above to equation (14) and we evaluate its components in
terms of partial derivatives in a coordinate basis. Putting

φAC
B′ = ∇AA′σC

A′B′ = εADεA′D′
∇DD′σC

A′B′ = εADεA′D′
Ψ C

DD′A′B′ , (58)
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we have in a spin-frame oA, ιA

φAC
B′ = εADεA

′D′
Ψ C

DD′A′B′ (59)

and Ψ C
DD′A′B′ can be expressed in the form

Ψ C
DD′A′B′ = gDD′

d σC
A′B′,d + σC0

A′B′ γDD′C0
C

−σC
A′

0B
′ γDD′A′

A′
0 − σC

A′B′0
γDD′B′

B′0 . (60)

The 8 components of φAC
B′ are

φ00
0′ = ε0DεA

′D′
Ψ 0

DD′A′0′ = Ψ 0
11′0′0′ −Ψ 0

10′1′0′ , φ01
0′ = Ψ 1

11′0′0′ −Ψ 1
10′1′0′

φ00
1′ = Ψ 0

11′0′1′ −Ψ 0
10′1′1′ , φ01

1′ = Ψ 1
11′0′1′ −Ψ 1

10′1′1′

φ10
0′ = ε1DεA

′D′
Ψ 0

DD′A′0′ = Ψ 0
00′1′0′ −Ψ 0

01′0′0′ , φ11
0′ = Ψ 1

00′1′0′ −Ψ 1
01′0′0′

φ10
1′ = Ψ 0

00′1′1′ −Ψ 0
01′0′1′ , φ11

1′ = Ψ 1
00′1′1′ −Ψ 1

01′0′1′ .

Evaluating the 16 required components of Ψ C
DD′A′B′ using the Infeld-Van der Waerden symbols

(32), (33), (34), (35) and the spin-coefficients (42), (43), (46), we eventually find the components of√
2φAC

B′ . The quantities φ00
1′ and φ10

0′ (resp. φ01
1′ and φ11

0′ ) both involve the time derivative of the same
component of σ, namely σ0

0′1′ (resp. σ1
0′1′). We keep

φ01
1′ = 0 , φ10

0′ = 0

as evolution equations and replace
φ00

1′ = 0 , φ11
0′ = 0

by
φ10

0′ − φ00
1′ = 0 , φ11

0′ − φ01
1′ = 0. (61)

The two equations (61) do not involve time derivatives and are merely constraints on the solutions
of the six evolution equations. Hence, we can write (14) under the following form : putting

U = t
(
σ0

0′0′ , σ
0
0′1′ , σ

0
1′1′ , σ

1
0′0′ , σ

1
0′1′ , σ

1
1′1′

)
, (62)

we have

∂U

∂t
=



hσ0
0′0′ + F 1/2

r L1 σ
0
0′1′

−
(
h+ F

r

)
σ0

0′1′ − F
r σ

1
0′0′ + F 1/2

r L3 σ
0
0′0′

−
(
h+ F ′

2

)
σ0

1′1′ − F
r σ

1
0′1′ + F 1/2

r L2 σ
0
0′1′(

h+ F ′

2

)
σ1

0′0′ + F
r σ

0
0′1′ + F 1/2

r L2 σ
1
0′1′(

h+ F
r

)
σ1

0′1′ + F
r σ

0
1′1′ + F 1/2

r L3 σ
1
1′1′

−hσ1
1′1′ + F 1/2

r L1 σ
1
0′1′



= HU (63)

where

h = F

(
∂

∂r
+
F ′

4F
+

1
r

)
, (64)
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Lk =
∂

∂θ
+

(
k − 3

2

)
cot θ +

i

sin θ
∂

∂ϕ
, k = 1, 2, 3, (65)

Lk =
∂

∂θ
+

(
k − 3

2

)
cot θ − i

sin θ
∂

∂ϕ
, k = 1, 2, 3, (66)

together with the two constraints

2hσ0
0′1′ +

(
2F
r
− F ′

2

)
σ0

0′1′ +
F

r
σ1

0′0′ −
F 1/2

r

(
L3 σ

0
0′0′ − L2 σ

0
1′1′

)
= 0, (67)

2hσ1
0′1′ +

(
2F
r
− F ′

2

)
σ1

0′1′ +
F

r
σ0

1′1′ −
F 1/2

r

(
L2 σ

1
0′0′ − L3 σ

1
1′1′

)
= 0. (68)

We can also check by translating the components of the gauge quantity ∇C
A′πB′ into a coordinate

dependent form that its symmetry in A′, B′ is equivalent to

F
−1
2
∂

∂t
π0′ − F

1
2

(
∂

∂r
+
F ′

4F
+

1
r

)
π0′ −

1
r

(
∂

∂θ
+

1
2

cot θ
)
π1′ +

i

r sin θ
π1′ = 0,

F
−1
2
∂

∂t
π1′ + F

1
2

(
∂

∂r
+
F ′

4F
+

1
r

)
π1′ −

1
r

(
∂

∂θ
+

1
2

cot θ
)
π0′ −

i

r sin θ
π0′ = 0,

which is the partial differential form of (see equations (51) and (52)) :

∇AA′πA′ = 0.

4 Global Cauchy problem in the successive domains of H

We introduce the Hilbert space H defined by

H =
{
L2

(
]1,+∞[r × S2

ω; F−1dr2 + r2dω2
)}6

(69)

and the successive domains of H in H, D(H0) being identified with H,

D(Hk) =
{
U ∈ H; HjU ∈ H, 1 ≤ j ≤ k

}
, k ∈ IN∗. (70)

We also consider the spaces Hc and D(Hk)c, k ∈ IN∗, of the elements of H and D(Hk), k ∈ IN∗,
which satisfy the constraint equations (67), (68); i.e. if we write (67) in the following way

AU = 0, A =
(
−F

1/2

r
L3 , 2h+

2F
r
− F ′

2
,
F 1/2

r
L2 ,

F

r
, 0 , 0

)
, (71)

and in the same manner (68) becomes

BU = 0, B =
(

0 , 0 ,
F

r
, − F 1/2

r
L2 , 2h+

2F
r
− F ′

2
,
F 1/2

r
L3

)
, (72)

then, we have simply
Hc = KerA

⋂
KerB (73)

where KerA is the kernel of A in H, and for k ∈ IN∗,

D(Hk)c = (KerA)D(Hk)

⋂
(KerB)D(Hk) = KerA

⋂
KerB

⋂
D(Hk) (74)
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where (KerA)D(Hk) is the kernel of A in D(Hk). The spaces Hc and D(Hk)c are the functional
spaces in which the solutions of (63), (67), (68) will live. Before we prove the existence and uniqueness
of such solutions, which will be done in theorem 4.1, it is interesting to note that spin 3/2 fields have
a natural conserved quantity given by integration of the Rarita-Schwinger 3-form on a space-like
hypersurface and that this conserved quantity is not positive definite. Therefore, there is no hope
of using it to define a norm on the space of solutions and the evolution will not be unitary. This
absence of natural self-adjointness framework will be the first problem to deal with if we wish to
develop a time-dependent scattering theory for spin 3/2 fields in the Schwarzschild space-time. The
conserved quantity is described in the following proposition

Proposition 4.1 The Rarita-Schwinger 3-form

β = iσaC′ σbC dxa ∧ dxb ∧ dxc (75)

is divergence-free, σA
B′C′ denoting the spinor, symmetric in B′, C ′, whose components satisfy (63),

(67) and (68). In other words, if we consider the sesqui-linear form (obtained by integration of the
3-form on a space-like hypersurface) defined for ξ, η ∈ H by

< ξ, η >β =
(
ξ00′0′ , η

0
0′0′

)
L2 +

(
ξ11′1′ , η

1
1′1′

)
L2 +

(
ξ10′1′ , η

1
0′1′

)
L2 +

(
ξ00′1′ , η

0
0′1′

)
L2

+
(
ξ01′1′ , η

1
0′1′

)
L2 +

(
ξ10′1′ , η

0
1′1′

)
L2 +

(
ξ10′0′ , η

0
0′1′

)
L2 +

(
ξ00′1′ , η

1
0′0′

)
L2 (76)

where ( , )L2 denotes the standard scalar product on L2
(
]1,+∞[r×S2

ω, F
−1dr2 +r2dω2

)
, then for

any U, V ∈ D(H)c

< HU, V >β= − < U,HV >β (77)

and if U ∈ C (IRt;Hc) is a solution of (63), the quantity < U,U >β is conserved throughout time.

The proof of proposition 4.1 will use several notations which we shall introduce later for the proof
of our main theorem. Therefore we shall postpone it until the end of the paragraph, after the proof
of theorem 4.1 has been completed. Let us now state our main existence and uniqueness result

Theorem 4.1 For any initial data U0 ∈ Hc (resp. U0 ∈ D(Hk)c, k ∈ IN∗), equation (63) admits a
unique solution U such that

U ∈ C (IRt;Hc)
(
resp. U ∈ C

(
IRt;D(Hk)c

))
(78)

and
U |t=0 = U0. (79)

Note that if U0 ∈ D(Hk)c, k ∈ IN∗, the solution U has the following additional regularities which are
immediate consequences of (63)

U ∈
k⋂

j=0
Cj

(
IRt;D(Hk−j)c

)
. (80)

Proof of theorem 4.1 : The essential idea is to use the symmetry of the space-time in order to separate
the variables and reduce the problem to solving an evolution equation in one space dimension. This
is done by decomposing equations (63), (67) and (68) into spin-weighted spherical harmonics. We
prove global existence and uniqueness results on each sub-space of given angular dependence. Then,
theorem 4.1 follows from an energy estimate.

If we introduce a new variable r∗, called the Regge-Wheeler or tortoise coordinate, defined by

r∗ = r + ln(r − 1) (81)
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and satisfying
dr∗
dr

= F−1 =
(

1− 1
r

)−1

, (82)

if we define the isometry

j : L2
(
]1,+∞[r×S2

ω, F
−1dr2 + r2dω2

)
−→ L2

(
IRr∗ × S2

ω; dr2∗ + dω2
)

f 7−→ rF 1/4f,
(83)

then we have
jh = ∂r∗j. (84)

Thus, we can use this isometry to simplify the expression of system (63). Multiplying each equation
by rF 1/4 and putting

V = t
(
ζ0
0′0′ , ζ

0
0′1′ , ζ

0
1′1′ , ζ

1
0′0′ , ζ

1
0′1′ , ζ

1
1′1′

)
= rF 1/4U (85)

we get the following system which is equivalent to (63)

∂V

∂t
=



∂r∗ζ
0
0′0′ + F 1/2

r L1 ζ
0
0′1′

−∂r∗ζ
0
0′1′ − F

r ζ
0
0′1′ − F

r ζ
1
0′0′ + F 1/2

r L3 ζ
0
0′0′

−∂r∗ζ
0
1′1′ − F ′

2 ζ
0
1′1′ − F

r ζ
1
0′1′ + F 1/2

r L2 ζ
0
0′1′

∂r∗ζ
1
0′0′ + F ′

2 ζ
1
0′0′ + F

r ζ
0
0′1′ + F 1/2

r L2 ζ
1
0′1′

∂r∗ζ
1
0′1′ + F

r ζ
1
0′1′ + F

r ζ
0
1′1′ + F 1/2

r L3 ζ
1
1′1′

−∂r∗ζ
1
1′1′ + F 1/2

r L1 ζ
1
0′1′



= H̃V (86)

and the constraints (67), (68) become

2∂r∗ζ
0
0′1′ +

(
2F
r
− F ′

2

)
ζ0
0′1′ +

F

r
ζ1
0′0′ −

F 1/2

r

(
L3 ζ

0
0′0′ − L2 ζ

0
1′1′

)
= 0, (87)

2∂r∗ζ
1
0′1′ +

(
2F
r
− F ′

2

)
ζ1
0′1′ +

F

r
ζ0
1′1′ −

F 1/2

r

(
L2 ζ

1
0′0′ − L3 ζ

1
1′1′

)
= 0, (88)

which we write

ÃV = 0, Ã =
(
−F

1/2

r
L3 , 2∂r∗ +

2F
r
− F ′

2
,
F 1/2

r
L2 ,

F

r
, 0 , 0

)
, (89)

B̃V = 0, B̃ =
(

0 , 0 ,
F

r
, − F 1/2

r
L2 , 2∂r∗ +

2F
r
− F ′

2
,
F 1/2

r
L3

)
. (90)

The operator H̃ on
H̃ =

{
L2

(
IRr∗ × S2

ω; dr2∗ + dω2
)}6

(91)

is isometric to H on H. Hence, it suffices to prove the theorem for the system (86), (87), (88)
associated with H̃. We define the successive domains of H̃ in H̃

D(H̃k) =
{
V ∈ H̃;HjV ∈ H̃, 1 ≤ j ≤ k

}
, k ∈ IN∗, (92)
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with the norm

‖V ‖2
D(H̃k)

=
k∑

l=0

‖H lV ‖2
H̃
, k ∈ IN∗ (93)

and in the same manner as previously

H̃c = KerÃ
⋂
KerB̃, (94)

D(H̃k)c = KerÃ
⋂
KerB̃

⋂
D(H̃k). (95)

We will also need the Sobolev spaces

IHk =
{
Hk

(
IRr∗ ; dr

2
∗
)}6

, k ∈ IN. (96)

Let us now separate the variables in equations (86), (87) and (88) by means of special functions
called spin-weighted spherical harmonics. Ordinary spherical harmonics, or spherical functions, arise
when considering the action of the three-dimensional rotation group O3 on scalar functions defined
on the unit 2-sphere. For each l ∈ IN, there is a system of 2l + 1 functions{

Y l
n(θ, ϕ) ∈ L2(S2)

}
−l≤n≤l

, (97)

the spherical functions of order l, which is invariant under the group O3. The definition of these
functions, which merely expresses the invariance of the family under the infinitesimal generators of
the representation of O3 acting on L2(S2), is the following

i
∂

∂ϕ
Y l

n = nY l
n, (98)

{
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
− n2

sin2 θ
+ l(l + 1)

}
Y l

n = 0, (99)

eiϕ

(
∂

∂θ
+ n cot θ

)
Y l

n =
∣∣∣∣ −i√(l − n+ 1)(l + n) Y l

n−1, n > −l,
0, n = −l, (100)

e−iϕ

(
∂

∂θ
− n cot θ

)
Y l

n =
∣∣∣∣ −i√(l − n)(l + n+ 1) Y l

n+1, n < l,
0, n = l.

(101)

On the subspace of L2(S2) generated by the spherical harmonics of order l, the representation of O3

becomes irreducible. When l varies in IN, we obtain a family of irreducible representations of O3 of all
integral orders. This family is in fact the decomposition into irreducible parts of the representation
of O3 acting on L2(S2). It follows that when normalized, the spherical harmonics{

Y l
n

}
l∈IN,−l≤n≤l

(102)

are a Hilbert basis of L2(S2).
If we study the action of O3 on more complex quantities like vector, tensor or spinor-valued

functions on S2, other representations will appear, characterized by a non-zero spin-weight. The
spin-weight describes the nature of the influence of a rotation around the direction of the North pole
on the value at the North pole of quantities on which the representation acts. More precisely, a
quantity with spin-weight m will, under such a rotation of angle ϕ, be multiplied by eimϕ. Let us
give a concrete example with a vector-valued function on S2. The value at the North-pole is simply
a vector in IR3 whose origin is at this point. Let us denote ar, aθ and aϕ its components in spherical
coordinates and put

a+ = aθ + iaϕ, a− = aθ − iaϕ. (103)
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If we rotate this vector around the direction of the North pole by an angle ϕ1, the components are
transformed in the following manner

ãr = ar, ãθ = aθ cosϕ1 − aϕ sinϕ1, ãϕ = aθ sinϕ1 + aϕ cosϕ1

and therefore, a+ and a− become

ã+ = ãθ + iãϕ = eiϕ1a+,

ã− = ãθ − iãϕ = e−iϕ1a−.

We see that ar, a+ and a− are transformed independently of each other. What we have done here
is to decompose the representation of O3 acting on vector-valued functions on the sphere into a sum
of three different representations. The representation acting on ar is identical to the one acting
on scalar functions (the radial part of the vector always remains orthogonal to the sphere when a
rotation acts, only the value of the component is modified), the corresponding spin-weight is 0. The
representation acting on a+ has spin-weight +1 since under a rotation of angle ϕ1 around the North
pole, a+ is multiplied by e+iϕ1 and the spin-weight associated to a− is −1. For a tensor field of
order k ∈ IN on the sphere, we can in a similar way decompose the tensor into parts of spin-weights
−k, −k + 1,..., 0,..., k − 1, k. Finally, the representation acting on 2-spinor fields of rank k ∈ IN
on S2 can be decomposed as the sum of simple or multiple representations with spin-weights −k

2 ,
−k

2 + 1,...,k
2 − 1, k

2 . Note that when k is odd, the spin-weights involved are half-integers and not
integers. In the case of spinor fields of even rank and tensor fields, the representations obtained are
single-valued, i.e. representations of O3 as such. However, for spinor fields of odd rank, we obtain
the double-valued representations which are representations of the universal (two-fold) covering of
O3: SU2.

For each spin-weight m, 2m ∈ ZZ, for each l such that l − |m| ∈ IN, we have an irreducible
representation of order l acting on weighted scalar fields on the 2-sphere with spin-weight m. The
invariant family of functions associated with it are called the spin-weighted spherical harmonics of
order l and spin-weight m. They are defined in the same manner as ordinary spherical harmonics by

W l
mn(θ, ϕ) = e−inϕul

mn(θ) ∈ L2(S2), (104)

d2ul
mn

dθ2
+ cot θ

dul
mn

dθ
+

[
l(l + 1)− n2 − 2mn cos θ +m2

sin2 θ

]
ul

mn = 0, (105)

dul
mn

dθ
− m− n cos θ

sin θ
ul

mn =
∣∣∣∣ −i [(l + n)(l − n+ 1)]1/2

ul
m,n−1, n > −l,

0, n = −l,
(106)

dul
mn

dθ
+
m− n cos θ

sin θ
ul

mn =
∣∣∣∣ −i [(l + n+ 1)(l − n)]1/2

ul
m,n+1, n < l,

0, n = l
(107)

and we normalize them by ∫ π

0

∣∣ul
mn(θ)

∣∣2 sin θdθ =
1
2π
. (108)

We also have the following recurrence relations which will be useful to us

dul
mn

dθ
− n−m cos θ

sin θ
ul

mn = −i [(l +m)(l −m+ 1)]1/2
ul

m−1,n, (109)

dul
mn

dθ
+
n−m cos θ

sin θ
ul

mn = −i [(l +m+ 1)(l −m)]1/2
ul

m+1,n. (110)

For a given spin-weight m, the family of irreducible representations obtained for l ≥ |m|, l−|m| ∈ IN,
is the decomposition into irreducible parts of the representation acting on weighted scalar functions
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on S2 with spin-weight m. It follows that for any spin-weight m, 2m ∈ ZZ, if we define the set of
indices

Im = {(l, n); l − |m| ∈ IN, l − |n| ∈ IN} , (111)

the family {
W l

mn(θ, ϕ)
}

(l,n)∈Im
(112)

is a Hilbert basis of L2
(
S2; dω2

)
. For m = 0, we recover ordinary spherical harmonics, i.e.

W l
0n ≡ Y l

n. (113)

For a more detailed account on spin-weighted spherical harmonics, their construction and properties,
see for example [6].

Square integrable weighted scalar functions on I×S2, I ⊂ IR, with spin-weightm can be expanded
uniquely in a series of the form

+∞∑
l=|m|

l∑
n=−l

al
n(r)W l

mn(θ, ϕ), al
n ∈ L2(I) (114)

and this expansion will be invariant under rotations. Thus we have a way of separating the variables
for equations which are invariant under rotations, like zero restmass field equations in spherically
symmetric backgrounds. The advantage of using the Newman-Penrose formalism for translating
2-spinor equations is that we obtain a form in which the spinors are already decomposed into com-
ponents of different spin-weights. Therefore, it allows us to separate the variables without further
manipulations on the equation. In our case, putting

W l
n = t

(
W l
− 3

2 ,n,W
l
− 1

2 ,n,W
l
1
2 ,n,W

l
− 1

2 ,n,W
l
1
2 ,n,W

l
3
2 ,n

)
, (l, n) ∈ I1/2, (115)

with the convention
W

1
2
± 3

2 , 1
2
≡W

1
2
± 3

2 ,− 1
2
≡ 0, (116)

we have

H̃ = ⊕
(l,n)∈I1/2

IH0 ⊗W l
n (117)

and for k ∈ IN∗

D(H̃k) = ⊕
(l,n)∈I1/2

IHk ⊗W l
n; (118)

the spaces IHk, k ∈ IN being defined in (96). We separate the variables in equations (86), (87) and
(88) using the basis W l

n of
[
L2(S2)

]6. This comes down to saying that the component σ0
0′0′ of σA

B′C′

has spin-weight −3/2, that σ0
0′1′ and σ1

0′0′ have spin-weight −1/2, σ0
1′1′ and σ1

0′1′ have spin-weight
1/2 and σ1

1′1′ has spin-weight 3/2.

Lemma 4.1 For (l, n) ∈ I1/2, if

V = VV ⊗W l
n, VV = t

(
f0
0′0′ , f

0
0′1′ , f

0
1′1′ , f

1
0′0′ , f

1
0′1′ , f

1
1′1′

)
∈ IHk, k ∈ IN∗,

then
H̃V ∈ IHk−1 ⊗W l

n (119)
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and we can write H̃V =
(
H̃lVV

)
⊗W l

n, with

H̃lVV =



∂r∗f
0
0′0′ − iα1

F 1/2

r f0
0′1′

−∂r∗f
0
0′1′ − F

r f
0
0′1′ − F

r f
1
0′0′ − iα1

F 1/2

r f0
0′0′

−∂r∗f
0
1′1′ − F ′

2 f
0
1′1′ − F

r f
1
0′1′ − iα2

F 1/2

r f0
0′1′

∂r∗f
1
0′0′ + F ′

2 f
1
0′0′ + F

r f
0
0′1′ − iα2

F 1/2

r f1
0′1′

∂r∗f
1
0′1′ + F

r f
1
0′1′ + F

r f
0
1′1′ − iα1

F 1/2

r f1
1′1′

−∂r∗f
1
1′1′ − iα1

F 1/2

r f1
0′1′



(120)

where

α1 =
[(
l − 1

2

) (
l +

3
2

)]1/2

, α2 = l +
1
2
. (121)

Moreover, V satisfies he constraints (i.e. V ∈ D(Hk)c) if and only if VV satisfies the following radial
constraint equations

ÃlVV =
(

2∂r∗ +
2F
r
− F ′

2

)
f0
0′1′ +

F

r
f1
0′0′ +

iα1F
1
2

r
f0
0′0′ −

iα2F
1
2

r
f0
1′1′ = 0, (122)

B̃lVV =
(

2∂r∗ +
2F
r
− F ′

2

)
f1
0′1′ +

F

r
f0
1′1′ −

iα1F
1
2

r
f1
1′1′ +

iα2F
1
2

r
f1
0′0′ = 0. (123)

Proof of lemma 4.1: We just need to calculate H̃V and the constraints using the recurrence relations
(109) and (110). The first component of H̃V is(

H̃V
)0

0′0′
= ∂r∗

(
f0
0′0′(r∗)W

l
− 3

2 n(θ, ϕ)
)

+

F 1/2

r

(
∂θ −

1
2

cot θ − i

sin θ
∂ϕ

) (
f0
0′1′W

l
− 1

2 n(θ, ϕ)
)
.

From (109) and the definition of W l
mn we see that(

∂θ −
1
2

cot θ − i

sin θ
∂ϕ

)
W l
− 1

2 n(θ, ϕ) =
(
∂θ −

n− 1
2 cot θ

sin θ

)
ul
− 1

2 n(θ)e−inϕ

= −i
[(
l − 1

2

) (
l +

3
2

)]1/2

ul
− 3

2 n(θ)e−inϕ = −iα1W
l
− 3

2 n(θ, ϕ)

whence the first component of H̃V can be written(
H̃V

)0

0′0′
=

(
∂r∗f

0
0′0′ − iα1

F 1/2

r
f0
0′1′

)
W l
− 3

2 n.
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The same explicit calculation for the five other components entails

H̃V =



(
∂r∗f

0
0′0′ − iα1

F 1/2

r f0
0′1′

)
W l
− 3

2 n(
−∂r∗f

0
0′1′ − F

r f
0
0′1′ − F

r f
1
0′0′ − iα1

F 1/2

r f0
0′0′

)
W l
− 1

2 n(
−∂r∗f

0
1′1′ − F ′

2 f
0
1′1′ − F

r f
1
0′1′ − iα2

F 1/2

r f0
0′1′

)
W l

1
2 n(

∂r∗f
1
0′0′ + F ′

2 f
1
0′0′ + F

r f
0
0′1′ − iα2

F 1/2

r f1
0′1′

)
W l
− 1

2 n(
∂r∗f

1
0′1′ + F

r f
1
0′1′ + F

r f
0
1′1′ − iα1

F 1/2

r f1
1′1′

)
W l

1
2 n(

−∂r∗f
1
1′1′ − iα1

F 1/2

r f1
0′1′

)
W l

3
2 n



=
(
ĨHlVV

)
⊗W l

n.

We can apply the same method to the constraint equations. From (87) we can write

ÃV =
(

2∂r∗ +
2F
r
− F ′

2

)
f0
0′1′W

l
− 1

2 n +
F

r
f1
0′0′W

l
− 1

2 n −
F 1/2

r

(
∂θ +

3
2

cot θ

+
i

sin θ
∂ϕ

)
f0
0′0′W

l
− 3

2 n +
F 1/2

r

(
∂θ +

1
2

cot θ − i

sin θ
∂ϕ

)
f0
1′1′W

l
1
2 n.

By (110) and (109) respectively we see that

−
(
∂θ +

3
2

cot θ +
i

sin θ
∂ϕ

)
W l
− 3

2 n = iα1W
l
− 1

2 n

and (
∂θ +

1
2

cot θ − i

sin θ
∂ϕ

)
W l

1
2 n = −iα2W

l
− 1

2 n

whence

ÃV =
[(

2∂r∗ +
2F
r
− F ′

2

)
f0
0′1′ +

F

r
f1
0′0′ + iα1

F 1/2

r
f0
0′0′ − iα2

F 1/2

r
f0
1′1′

]
W l
− 1

2 n.

And in the same manner we prove

B̃V =

[(
2∂r∗ +

2F
r
− F ′

2

)
f1
0′1′ +

F

r
f0
1′1′ −

iα1F
1
2

r
f1
1′1′ +

iα2F
1
2

r
f1
0′0′

]
W l

1
2 n

which proves lemma 4.1. �
It follows from the previous lemma that H̃c and D(H̃k)c, k ∈ IN∗, can themselves be decomposed

into spin-weighted spherical harmonics in the following way :

H̃c = ⊕
(l,n)∈I1/2

IH0
cl ⊗W l

n, D(H̃k)c = ⊕
(l,n)∈I1/2

IHk
cl ⊗W l

n (124)

where, for k ∈ IN, l ≥ 1/2,

IHk
cl =

{
VV ∈ IHk; (121), (122), (123) hold

}
. (125)
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For (l, n) ∈ I1/2, H̃ can be written on each IHk, k ∈ IN, as

H̃l = E∂r∗ + Pl(r) (126)

where
E = diag(1,−1,−1, 1, 1,−1) (127)

and the potential

Pl(r) =



0 −iα1
F 1/2

r 0 0 0 0
−iα1

F 1/2

r −F
r 0 −F

r 0 0
0 −iα2

F 1/2

r −F ′

2 0 −F
r 0

0 F
r 0 F ′

2 −iα2
F 1/2

r 0
0 0 F

r 0 F
r −iα1

F 1/2

r

0 0 0 0 −iα1
F 1/2

r 0


(128)

is clearly a bounded operator on IHk. Moreover, E∂r∗ is skew-adjoint on IHk with dense domain
IHk+1. We can now state and prove the following existence and uniqueness result

Lemma 4.2 Let V0 ∈ IHk ⊗W l
n, k ∈ IN, (l, n) ∈ I1/2, equation (86) has a unique solution V such

that
V ∈ C

(
IRt; IHk ⊗W l

n

)
, V |t=0= V0 (129)

and we have an exponential control on the norm of the solution :

∃Ckl > 0; ∀t ∈ IR ‖V (t)‖IHk ≤ eCkl|t|‖V0‖IHk . (130)

We also have

V ∈
k⋂

j=0
Cj

(
IRt; IHk−j ⊗W l

n

)
. (131)

Moreover, if {V m
0 }m∈IN is a sequence in IHk ⊗W l

n such that

V m
0 −→ V0 in IHk ⊗W l

n, m→ +∞,

for each m, we have a solution of (86)

V m ∈ C
(
IRt; IHk ⊗W l

n

)
(132)

associated with V m
0 and the sequence V m satisfies

V m −→ V in C
(
IRt; IHk ⊗W l

n

)
, m→ +∞, (133)

i.e. the convergence is uniform on each compact of IRt. The solutions are continuous with respect to
their initial data. Note that the propagation speed is lower than or equal to 1.

Proof of lemma 4.2: We use essentially a fixed point (or Picart) method. Firstly, we express the
evolution system (86) with the initial data condition

V |t=0 = V0 ∈ IHk ⊗W l
n

as an integral equation
V (t) = SV (t) (134)
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where

SV (t) = etE ∂
∂r∗ V0 +

∫ t

0

e(t−s)E ∂
∂r∗ Pl(r)V (s)ds. (135)

The solution of (134) on C(0, T ; IHk ⊗W l
n), T ∈ IR, is equivalent to the solution of (86) in the same

space with the initial data condition. For T ∈ IR, the space C(0, T ; IHk ⊗W l
n) is stable under the

functional S and for T small enough, S is a strict contraction on the closed ball{
V ∈ C(0, T ; IHk ⊗W l

n);∀t ∈ [0, T ], ‖V (t)‖IHk ≤ 2‖V0‖IHk

}
. (136)

By a standard convexity argument, this gives the existence and uniqueness of local solutions of (86).
The boundedness of Pl entails by Gronwall’s lemma that a solution of (134) in C(0, T ; IHk ⊗ W l

n)
must satisfy the estimate

‖V (t)‖IHk ≤ eCkl|t|‖V0‖IHk where Ckl = ‖Pl‖L(IHk), (137)

L(IHk) being the space of continuous linear mappings from IHk to itself. This a priori estimate
guarantees global existence for local solutions. Together with the linearity of the equation, it also
entails uniqueness of solutions as well as the continuity with respect to initial data. �

The next step is to see that the constraints are conserved by the evolution. We start by proving
that the hamiltonian operator on each angular dependence conserves the constraints

Lemma 4.3 Let V = VV ⊗W l
n ∈ IH0 ⊗W l

n, (l, n) ∈ I1/2. In the sense of distributions we have

ÃlH̃lVV = −
(
∂r∗ +

F

r

)
ÃlVV, B̃lH̃lVV = +

(
∂r∗ +

F

r

)
B̃lVV. (138)

Proof of lemma 4.3 It is just a long and explicit calculation without any difficulty. We denote

VV = t
(
f0
0′0′ , f

0
0′1′ , f

0
1′1′ , f

1
0′0′ , f

1
0′1′ , f

1
1′1′

)
.

The quantity

ÃlH̃lVV =
(

2∂r∗ +
2F
r
− F ′

2

) (
H̃lVV

)0

0′1′
+
F

r

(
H̃lVV

)1

0′0′

+
iα1F

1/2

r

(
H̃lVV

)0

0′0′
− iα2F

1/2

r

(
H̃lVV

)0

1′1′
, (139)

where (
H̃lVV

)0

0′0′
= ∂r∗f

0
0′0′ − iα1

F 1/2

r
f0
0′1′

is the first component of H̃lVV,
(
H̃lVV

)0

0′1′
the second, etc..., is defined in the sense of distributions.

We develop (139) completely using the expression of the components of H̃VV. We do the same with

−
(
∂r∗ +

F

r

)
ÃlVV = −

(
∂r∗ +

F

r

) [(
2∂r∗ +

2F
r
− F ′

2

)
f0
0′1′

+
F

r
f1
0′0′ +

iα1F
1/2

r
f0
0′0′ −

iα2F
1/2

r
f0
1′1′

]
(140)

and we substract the latter from the former. Remembering that ∂r∗ = F∂r as well as the values of
α1 and α2, we will find that all the terms cancel one another. The same sort of painstaking exercise
gives

B̃lH̃lVV =
(
∂r∗ +

F

r

)
B̃lVV (141)
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and lemma 4.3 is thus proved. �
As an immediate consequence of (138), for VV ∈ IH0

ÃlVV = 0 ⇒ ÃlH̃lVV = 0, B̃lVV = 0 ⇒ B̃lH̃lVV = 0.

The upshot of this result is that the constraints are indeed conserved by the evolution. The precise
statement is given in the following lemma

Lemma 4.4 For any initial data V0 ∈ IHk ⊗W l
n, k ∈ IN, (l, n) ∈ I1/2, satisfying the constraints

ÃV0 = 0, B̃V0 = 0,

the solution V of (86) in C
(
IRt; IHk ⊗W l

n

)
such that V |t=0 = V0 satisfies the constraints, i.e.

V ∈
k

∩
j=0

Cj
(
IRt; IH

k−j
cl ⊗W l

n

)
.

The case k ≥ 1 is a straightforward consequense of the case k = 0. However, the proof of lemma 4.4
in the case k = 0 is slightly technical and will be detailed after the proof of the main theorem.

In order to establish the global existence in C
(
IRt; H̃c

)
and C

(
IRt;D(H̃k)c

)
, k ≥ 1, of the

solutions of (86), we use an energy estimate. Let us consider the set

K =

V =
∑

finite

V ln ⊗W l
n; V ln ∈ C∞0 (IRr∗), ÃlV

ln = 0, B̃lV
ln = 0

 . (142)

K is obviously dense in H̃c and D(H̃k)c, k ≥ 1 and we can define on K a propagator V for (86) by
linearity. Indeed, if

V0 =
∑

finite

V ln
0 ⊗W l

n ∈ K (143)

we denote by V ln the solution of (86) associated with the initial data V ln
0 ⊗W l

n and the action on
V0 of the propagator V at each time t ∈ IR will be given by

V(t)V0 =
∑

V ln(t). (144)

By construction, V satisfies the following properties :

V(t+ s) = V(t)V(s), ∀t, s ∈ IR, (145)
V(0) = 1IK (146)

and for any V0 ∈ K we have

V(t)V0 ∈ C
(
IRt; H̃c

) ⋂  +∞⋂
k=1

k⋂
j=0

Cj
(
IRt;D(H̃k−j)c

) . (147)

The energy estimate will enable us to extend V to the whole of H̃c. Let V0 ∈ K and

V = t
(
ζ0
0′0′ , ζ

0
0′1′ , ζ

0
1′1′ , ζ

1
0′0′ , ζ

1
0′1′ , ζ

1
1′1′

)
= V(t)V0.

We have
∂

∂t
|V |2 = iHV V + V iHV = 2Re(V iHV ).

20



If we integrate this identity on [0, t]× IRr∗ × S2
ω, we obtain

‖V (t)‖2H̃ − ‖V (0)‖2H̃ = 2
∫ t

0

∫
IR×S2

Re
(
V (s)iHV (s)

)
dr∗dωds. (148)

From the second and fifth lines of (86), using (120) and the constraints, we find

∂tζ
0
0′1′ = ∂r∗ζ

0
0′1′ +

(
F

r
− F ′

2

)
ζ0
0′1′ +

F 1/2

r

(
∂θ +

1
2

cot θ − i

sin θ
∂ϕ

)
ζ0
1′1′ ,

∂tζ
1
0′1′ = −∂r∗ζ

1
0′1′ −

(
F

r
− F ′

2

)
ζ1
0′1′ +

F 1/2

r

(
∂θ +

1
2

cot θ +
i

sin θ
∂ϕ

)
ζ1
0′0′ .

Multiplying the first equality by 2ζ0
0′1′ and the second by 2ζ1

0′1′ , we integrate them on [0, t]×IRr∗×S2
ω.

Adding the results to (148) and developing the right handside of (148), we obtain

‖V (t)‖2H̃ + ‖ζ0
0′1′(t)‖2L2 + ‖ζ1

0′1′(t)‖2L2

−
(
‖V (0)‖2H̃ + ‖ζ0

0′1′(0)‖2L2 + ‖ζ1
0′1′(0)‖2L2

)
= I(t) (149)

where ‖.‖L2 denotes the norm in L2(IR× S2; dr2∗ + dω2) and

I(t) = 2
∫ t

0

∫
IR×S2

Re

{
ζ0
0′0′∂r∗ζ

0
0′0′ + ζ0

0′0′
F 1/2

r

(
∂θ −

1
2

cot θ − i

sin θ
∂ϕ

)
ζ0
0′1′

−ζ0
0′1′∂r∗ζ

0
0′1′ − ζ0

0′1′
F

r

(
ζ0
0′1′ + ζ1

0′0′
)

+ ζ0
0′1′

F 1/2

r

(
∂θ +

3
2

cot θ +
i

sin θ
∂ϕ

)
ζ0
0′0′

−ζ0
1′1′∂r∗ζ

0
1′1′ − ζ0

1′1′
F ′

2
ζ0
1′1′ − ζ0

1′1′
F

r
ζ1
0′1′ + ζ0

1′1′
F 1/2

r

(
∂θ +

1
2

cot θ +
i

sin θ
∂ϕ

)
ζ0
0′1′

+ζ0
0′1′∂r∗ζ

0
0′1′ + ζ0

0′1′

(
F

r
− F ′

2

)
ζ0
0′1′ + ζ0

0′1′
F 1/2

r

(
∂θ +

1
2

cot θ − i

sin θ
∂ϕ

)
ζ0
1′1′

−ζ1
0′1′∂r∗ζ

1
0′1′ − ζ1

0′1′

(
F

r
− F ′

2

)
ζ1
0′1′ + ζ1

0′1′
F 1/2

r

(
∂θ +

1
2

cot θ +
i

sin θ
∂ϕ

)
ζ1
0′0′

+ζ1
0′0′∂r∗ζ

1
0′0′ + ζ1

0′0′
F ′

2
ζ1
0′0′ + ζ1

0′0′
F

r
ζ0
0′1′ + ζ1

0′0′
F 1/2

r

(
∂θ +

1
2

cot θ − i

sin θ
∂ϕ

)
ζ1
0′1′

+ζ1
0′1′∂r∗ζ

1
0′1′ + ζ1

0′1′
F

r

(
ζ1
0′1′ + ζ0

1′1′
)

+ ζ1
0′1′

F 1/2

r

(
∂θ +

3
2

cot θ − i

sin θ
∂ϕ

)
ζ1
1′1′

−ζ1
1′1′∂r∗ζ

1
1′1′ + ζ1

1′1′
F 1/2

r

(
∂θ −

1
2

cot θ +
i

sin θ
∂ϕ

)
ζ1
0′1′

}
dr∗dωds. (150)

It is easy to see, using integrations by parts in θ and ϕ, that the terms in I(t) involving the angular
operators Lk or Lk all cancel one another. The same is true for the terms involving a partial derivative
with respect to r∗. The remaining terms are of the form

2Re
∫ t

0

∫
IR×S2

g
F

r
fdr∗dωds and 2Re

∫ t

0

∫
IR×S2

g
F ′

2
fdr∗dωds

and can be estimated by

2
∫ t

0

‖V (s)‖2H̃ds.
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Hence, we have the following estimate for t ∈ IR

‖V (t)‖2H̃ ≤ 2‖V0‖2H̃ + C

∫ t

0

‖V (s)‖2H̃ds , C > 0

and using Gronwall’s lemma, we obtain

Lemma 4.5 There exists a constant C > 0 such that for V0 ∈ K and t ∈ IR

‖V(t)V0‖2H̃ ≤ 2eC|t|‖V0‖2H̃ (151)

where V is the propagator in K for equation (86).

Moreover, if we consider
H̃V0 =

∑
finite

H̃lV
ln
0 ⊗W l

n,

it is an element of K and H̃V ln(t)⊗W l
n is the solution of (86) in the space C

(
IRt; IHk ⊗W l

n

)
, k ∈ IN,

associated with the initial data V ln
0 ⊗W l

n, i.e. for all t ∈ IR we have

V(t)
(
H̃V0

)
=

∑
finite

H̃lV
ln(t)⊗W l

n = H̃V(t)V0 = H̃V (t)

whence
‖H̃V (t)‖2H̃ ≤ 2‖H̃V0‖2H̃e

C|t|.

Repeating the process an arbitrary number of times, we can write for any k ∈ IN∗

‖V (t)‖2
D(H̃k)

≤ 2‖V0‖2D(H̃k)
eC|t|. (152)

Lemma 4.5 and estimate (152) show that for any t ∈ IR, V(t) is a bounded operator on K for the
norms in H̃ and D(H̃k), k ≥ 1. This allows us to extend V(t), t ∈ IR, as an element of the following
space

V(t) ∈ L
(
H̃c

) ⋂  +∞⋂
k=1

L
(
D(H̃k)c

) , (153)

L
(
H̃c

)
denoting the space of bounded linear mappings from H̃c to itself. We have the following

control on the norm of V(t) in all these spaces

‖V(t)‖ ≤
√

2eC′|t|, C ′ =
C

2
> 0, t ∈ IR. (154)

By continuity, V satisfies

V(t+ s) = V(t)V(s), in L
(
H̃c

)
, t, s ∈ IR, (155)

V(0) = 1IL(H̃c) (156)

and for V0 ∈ L
(
H̃c

)
(resp. D(H̃k)c, k ≥ 1)

V(t)V0 ∈ C
(
IRt;L

(
H̃c

)) (
resp. C

(
IRt;D(H̃k)c

))
(157)

as a locally uniform limit of continuous functions. If we consider V0 ∈ H̃c, by continuity in the
sense of distributions, V(t)V0 is a solutions of (86) in C

(
IRt; H̃c

)
such that (V(t)V0)|t=0 = V0 and
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this solution is unique as a consequence of the uniqueness of solutions on each angular dependence.
Thus, theorem 4.1 is proved. We shall denote U the propagator for equation (63). U can be defined
explicitely from V by

U(t)U0 =
(
rF 1/4

)−1

V(t)
[
rF 1/4U0

]
(158)

and U on Hc is isometric to V on H̃ in the same way that H is isometric to H̃. �
Proof of lemma 4.2 : Let us consider for some (l, n) ∈ I1/2

V0 ∈ IH0
cl ⊗W l

n.

We know from (138) that ÃlH̃lV0 = 0 and B̃lH̃lV0 = 0. Denoting by Vl the propagator of the
equation in IH0 ⊗W l

n, we wish to prove that for any t ∈ IR

ÃlVl(t)V0 = 0 and B̃lVl(t)V0 = 0.

To this purpose, we express Vl(t)V0, t ∈ IR∗, as the limit

Vl(t)V0 = lim
k→+∞

(
I − t

k
H̃l

)−k

V0 in IH0 ⊗W l
n (159)

We are justified in writing so since Vl is a strongly continuous one parameter group on IH0⊗W l
n (see

[7]) and moreover the limit (159) is uniform with respect to t in each interval of the form [ε, 1/ε[.
Indeed, we see immediately through an argument of convergence in the sense of distributions that
the operator H̃l is closed and is therefore the infinitesimal generator of Vl. The idea is now to prove

that, under some suitable assumptions, the operator
(
I − t

nH̃l

)−1

conserves the constraints. The
estimate (130) tells us that for |Re(λ)| > C0l, where Re(λ) denotes the real part of λ, λ cannot be
an eigenvalue of H̃l in IH0 ⊗W l

n and the resolvent

R(λ, H̃l) = (λ− H̃l)−1 (160)

is a bounded operator on IH0 ⊗W l
n. We wish to prove that for λ ∈ IR, |λ| > Kl = Max {1, C0l}, we

have the following implication

u ∈ IH0
cl ⊗W l

n ⇒ (λ− H̃l)−1u ∈ IH0
cl ⊗W l

n. (161)

Let us consider u ∈ IH0
cl ⊗W l

n. We put

w = (λ− H̃l)−1u. (162)

With this definition, we have

w ∈ IH0 ⊗W l
n, u = (λ− H̃l)w ∈ IH0

cl ⊗W l
n.

A straightforward consequence is that both w and H̃lw belong to IH0⊗W l
n and therefore, w considered

as only a function of r∗ belongs to (H1(IRr∗))
6. In other words, we have

w ∈ IH1 ⊗W l
n.

If now we put
v = Ãlw (163)

then obviously v belongs to L2(IRr∗) and using (138), the fact that (λ−H̃l)w satisfies the constraints
implies

λv +
(
∂r∗ +

F

r

)
v = 0, (164)
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i.e. v is an eigenfunction of ∂r∗ + F
r in L2(IRr∗) associated with the eigenvalue −λ. It is very easy

to see that if µ is a real eigenvalue for ∂r∗ + F
r associated with an eigenfunction f ∈ L2(IRr∗) (the

angular variables have no importance whatsoever here), then µ has to satisfy

|µ| ≤
∥∥∥∥Fr

∥∥∥∥
L∞

≤ 1.

Since by assumption |λ| > 1, v must be identically zero, which means

Ãlw = 0

and in the same manner we obtain
B̃lw = 0

which proves the implication (161). Using this result, we have immediately that for 0 < |t| < 1/Kl

and for n ∈ IN∗ the operator (
I − t

n
H̃l

)−1

conserves the constraints and so does (
I − t

n
H̃l

)−n

.

Since both operators Ãl and B̃l on IH0 ⊗W l
n are closed, the limit (159) implies that Vl(t) conserves

the constraints for 0 < |t| < 1/Kl and consequently for all t 6= 0 using the group property. �
Proof of proposition 4.1: In all its generality, the Sparling 3-form (see [13]) plays a very important

role in General Relativity. It is defined by

β = iW aC′WbCdx
a ∧ dxb ∧ dxc (165)

where
WaB = ∇aλB , (166)

λB being a solution of the Sen-Witten equation on a foliation of space-like hypersurfaces. The
property

dβ = 0 (167)

is a necessary and sufficient condition for Einstein’s vacuum equations to hold, together with the
connection ∇a being tortion-free. The 3-form that we are considering here

β = iσaC′σbCdx
a ∧ dxb ∧ dxc

is a special case where W aB′ has been replaced with a spin 3/2 potential. It is convenient to express
β as

β = ieabcdσbC′σdCXa , Xa =
1
6
eabcddx

b ∧ dxc ∧ dxd, (168)

eabcd being the Levi-Civita tensor, i.e.

eabcd = e[abcd] , e0123 = 1. (169)

eabcd can be expressed in terms of ε spinors as

eabcd = iεACεBDεA′D′εB′C′ − iεADεBCεA′C′εB′D′ (170)

and the equivalence between the 2 expressions of β is straightforward. Using (170), we have

β = −
(
σBB′

B′
σA′BA − σBB′

A′σB′AB
)
Xa. (171)
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σC
A′B′ being symmetric in A′, B′, σBB′B

′
= 0 and

β = σBB′
A′σB′ABXa. (172)

If we want to integrate β on the space-like hypersurface

S =]1,+∞[r×S2
ω, (173)

we choose
Xa = taS (174)

where ta is the unit normal to S, i.e.

ta = F−1/2g0
a, ta = F 1/2ga

0 (175)

and S is the 3-volume element on S, given by the square root of the determinant of the induced
metric on S

S = F−1/2r2 sin θdrdθdϕ. (176)

Hence, we find that ∫
S

β =
∫

S

σBB′
A′σB′ABga

0r2 sin θdrdθdϕ (177)

and we just need to evaluate σBB′A
′
σB′ABga

0. Using concrete indices, we have

σBB′
A′σB′ABga

0 = σBB′
A′σB′ABgAA′

0 = σBB′
A′
σB′ABgAA′

0

and the components gAA′0 of ga
0 in the spin-frame are the components of the first Infeld-Van der

Waerden symbol. After calculation and putting

ζA
B′C′ = rF 1/4σA

B′C′ , (178)

we find that the integral of β over S can be expressed as∫
S

β =
−1√

2

{(
ζ0
0′0′ , ζ

0
0′0′

)
+

(
ζ1
1′1′ , ζ

1
1′1′

)
+

(
ζ1
0′1′ , ζ

1
0′1′

)
+

(
ζ0
0′1′ , ζ

0
0′1′

)
+2Re

(
ζ0
1′1′ , ζ

1
0′1′

)
+ 2Re

(
ζ0
0′1′ , ζ

1
0′0′

)}
(179)

where (., .) denotes the scalar product on L2
(
IRr∗ × S2

ω; dr2∗ + dω2
)
. From the previous expression,

we define the sesqui-linear form for ξ, η ∈ H̃

<< ξ, η >>β=
(
ξ00′0′ , η

0
0′0′

)
+

(
ξ11′1′ , η

1
1′1′

)
+

(
ξ10′1′ , η

1
0′1′

)
+

(
ξ00′1′ , η

0
0′1′

)
+

(
ξ01′1′ , η

1
0′1′

)
+

(
ξ10′1′ , η

0
1′1′

)
+

(
ξ10′0′ , η

0
0′1′

)
+

(
ξ00′1′ , η

1
0′0′

)
. (180)

We want to see that if V is a solution of (86) in C
(
IRt; H̃c

)
, then << V, V >>β is conserved throughout

time. Let us first prove that for ξ, η ∈ D(H̃)c

<< H̃ξ, η >>β= − << ξ, H̃η >>β . (181)

Considering the particular case when

ξ, η ∈ C∞0 (IRr∗)⊗W l
n, (l, n) ∈ I1/2,
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and ξ, η satisfy the constraints, it is a tedious but straightforward calculation to check that (181)
holds. Consequently, (181) has to be satisfied by any two ξ, η in K. Indeed, if I1 and I2 are two
finite subsets of I1/2 and

ξ =
∑

(l,n)∈I1

ξln ⊗W l
n ∈ K, η =

∑
(l,n)∈I2

ηln ⊗W l
n ∈ K,

then
<< H̃ξ, η >>β=<<

∑
(l,n)∈I1

H̃lξ
ln ⊗W l

n,
∑

(l,n)∈I2

ηln ⊗W l
n >>β .

By orthogonality of spin-weighted spherical harmonics, we can take the sum out of the scalar product
and we obtain

<< H̃ξ, η >>β=
∑

(l,n)∈I1∪I2

<< H̃(ξln ⊗W l
n), ηln ⊗W l

n >>β

with the convention

ξln = 0 if (l, n) ∈ I2 − I1, ηln = 0 if (l, n) ∈ I1 − I2.

We can now use (181) on each angular dependence

<< H̃ξ, η >>β= −
∑

(l,n)∈I1∪I2

<< ξln ⊗W l
n, H̃(ηln ⊗W l

n) >>β

= − <<
∑

(l,n)∈I1

ξln ⊗W l
n, H̃

∑
(l,n)∈I2

ηln ⊗W l
n >>β= − << ξ, H̃η >>β .

Hence, (181) holds on K and by density of K in D(H̃)c, (181) is satisfied by any two ξ, η ∈ D(H̃)c.
Note that this is equivalent to (77). As a simple consequence, we can see that for V0 ∈ D(H̃)c,

<< V(t)V0,V(t)V0 >>β=<< V0, V0 >>β , ∀t ∈ IR. (182)

Indeed, if we recall that
V(t)V0 ∈ C

(
IRt;D(H̃)c

) ⋂
C1

(
IRt; H̃c

)
,

then we have
<< V(t)V0,V(t)V0 >>β∈ C1 (IRt) ,

whence we can write
d

dt
<< V(t)V0,V(t)V0 >>β

=<< H̃V(t)V0,V(t)V0 >>β + << V(t)V0, H̃V(t)V0 >>β= 0

using (181). And by continuity of the solutions with respect to their initial data, (182) is satisfied
for any V0 ∈ H̃, which is equivalent to saying that if U is a solution of (63) in C (IRt;Hc), < U,U >β

is conserved throughout time, where < ., . >β is defined by (76). This completes the proof of
proposition 4.1. �
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5 Conclusion

Thus, we have established that the Cauchy problem for the Dirac equation for a spin 3/2 massless
first potential is well-posed in a natural class of functional spaces. As for the gauge quantities,
they are simply solutions of the Weyl neutrino equation, which in the zero rest-mass case can be
identified with the Dirac equation. Consequently, we know (see [9]) that the Cauchy problem for these
quantities is also well-posed in a similar family of spaces. Therefore, at least in the Schwarzschild
space-time, there doesn’t seem to be anything pathological about the propagation of the spin 3/2
potential modulo gauge. This is of course only a beginning of answer to the twistorial issue we
have mentionned in the introduction. But one would actually expect the situation to be similar in
all Ricci-flat space-times. More precisely, we have said in the introduction that the flat-space time
topological construction which allows one to define a twistor as a charge for a spin 3/2 field cannot
be carried out successfully in Ricci-flat space-times. The reason for this does not seem to be of an
analytic nature, i.e. some pathological behavior of the propagator of the potential modulo gauge
in the cone of dependence of a topologically trivial space-like compact hypersurface. Therefore, it
is more probably of a topological nature, a proper covering of S2 (as described in [10]) might turn
out not to exist at each time. However, proving it should be quite difficult. It requires to study
the propagator for the spin 3/2 potential and for the Weyl field in a general Ricci-flat space-time,
which really means solving the Cauchy problem for both equations in a space of minimum regularity
solutions. Then, it would be necessary to work out the exact nature of the topological obstruction.

Along more usual analytic lines, there remains quite a lot to be done about spin 3/2 fields
in Ricci-flat space-times. Having solved the Cauchy problem, it would seem natural to develop a
time dependent scattering theory for these fields. The main problem is of course the absence of a
natural self-adjointness framework. It seems however possible to overcome this difficulty by means
of a gauge transformation, probably at the level of the Rarita-Schwinger equations. The Dirac
formulation of the spin 3/2 equations already corresponds to a gauge choice in the Rarita-Schwinger
system. A different gauge fixing could lead to a formulation where the conserved quantity is positive
definite, which corresponds to a naturally self-adjoint hamiltonian. This possibility is currently
under investigation in a joint work with L.J. Mason. It could also have interesting applications to
the theory of integrable systems.
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